Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 42(46): 8742-8753, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36302636

RESUMEN

Mnemonic discrimination, a cognitive process that relies on hippocampal pattern separation, is one of the first memory domains to decline in aging and preclinical Alzheimer's disease. We tested whether functional connectivity (FC) within the entorhinal-hippocampal circuit, measured with high-resolution resting state fMRI, is associated with mnemonic discrimination and amyloid-ß (Aß) pathology in a sample of 64 cognitively normal human older adults (mean age, 71.3 ± 6.4 years; 67% female). FC was measured between entorhinal-hippocampal circuit nodes with known anatomical connectivity, as well as within cortical memory networks. Aß pathology was measured with 18F-florbetapir-PET, and neurodegeneration was assessed with subregional volume from structural MRI. Participants performed both object and spatial versions of a mnemonic discrimination task outside of the scanner and were classified into low-performing and high-performing groups on each task using a median split. Low object mnemonic discrimination performance was specifically associated with increased FC between anterolateral entorhinal cortex (alEC) and dentate gyrus (DG)/CA3, supporting the importance of this connection to object memory. This hyperconnectivity between alEC and DG/CA3 was related to Aß pathology and decreased entorhinal cortex volume. In contrast, spatial mnemonic discrimination was not associated with altered FC. Aß was further associated with dysfunction within hippocampal subfields, particularly with decreased FC between CA1 and subiculum as well as reduced volume in these regions. Our findings suggest that Aß may indirectly lead to memory impairment through entorhinal-hippocampal circuit dysfunction and neurodegeneration and provide a mechanism for increased vulnerability of object mnemonic discrimination.SIGNIFICANCE STATEMENT Mnemonic discrimination is a critical episodic memory process that is performed in the dentate gyrus (DG) and CA3 subfield of the hippocampus, relying on input from entorhinal cortex. Mnemonic discrimination is particularly vulnerable to decline in older adults; however, the mechanisms behind this vulnerability are still unknown. We demonstrate that object mnemonic discrimination impairment is related to hyperconnectivity between the anterolateral entorhinal cortex and DG/CA3. This hyperconnectivity was associated with amyloid-ß pathology and neurodegeneration in entorhinal cortex, suggesting aberrantly increased network activity is a pathological process. Our findings provide a mechanistic explanation of the vulnerability of object compared to spatial mnemonic discrimination in older adults and has translational implications for choice of outcome measures in clinical trials for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Memoria Episódica , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Hipocampo/metabolismo , Corteza Entorrinal/metabolismo , Péptidos beta-Amiloides/metabolismo , Imagen por Resonancia Magnética
2.
Sci Rep ; 13(1): 13953, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626094

RESUMEN

Older adults may harbor large amounts of amyloid-ß (Aß) pathology, yet still perform at age-normal levels on memory assessments. We tested whether functional brain networks confer resilience or compensatory mechanisms to support memory in the face of Aß pathology. Sixty-five cognitively normal older adults received high-resolution resting state fMRI to assess functional networks, 18F-florbetapir-PET to measure Aß, and a memory assessment. We characterized functional networks with graph metrics of local efficiency (information transfer), modularity (specialization of functional modules), and small worldness (balance of integration and segregation). There was no difference in functional network measures between older adults with high Aß (Aß+) compared to those with no/low Aß (Aß-). However, in Aß+ older adults, increased local efficiency, modularity, and small worldness were associated with better memory performance, while this relationship did not occur Aß- older adults. Further, the association between increased local efficiency and better memory performance in Aß+ older adults was localized to local efficiency of the default mode network and hippocampus, regions vulnerable to Aß and involved in memory processing. Our results suggest functional networks with modular and efficient structures are associated with resilience to Aß pathology, providing a functional target for intervention.


Asunto(s)
Trastornos de la Memoria , Memoria , Humanos , Anciano , Trastornos de la Memoria/diagnóstico por imagen , Péptidos beta-Amiloides , Benchmarking , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA