Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
J Appl Physiol (1985) ; 136(6): 1507-1515, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660726

RESUMEN

Ground-level ozone (O3) is a potent air pollutant well recognized to acutely induce adverse respiratory symptoms and impairments in pulmonary function. However, it is unclear how the hyperpnea of exercise may modulate these effects, and the subsequent consequences on exercise performance. We tested the hypothesis that pulmonary function and exercise capability would be diminished, and symptom development would be increased during peak real-world levels of O3 exposure compared with room air. Twenty aerobically trained participants [13 M, 7 F; maximal O2 uptake (V̇o2max), 64.1 ± 7.0 mL·kg-1·min-1] completed a three-visit double-blinded, randomized crossover trial. Following a screening visit, participants were exposed to 170 ppb O3 or room air (<10 ppb O3) on separate visits during exercise trials, consisting of a 25-min moderate-intensity warmup, 30-min heavy-intensity bout, and a subsequent time-to-exhaustion (TTE) performance test. No differences in O2 uptake or ventilation were observed during submaximal exercise between conditions. During the TTE test, we observed significantly lower end-exercise O2 uptake (-3.2 ± 4.3%, P = 0.004), minute ventilation (-3.2 ± 6.5%, P = 0.043), tidal volume (-3.6 ± 5.1%, P = 0.008), and a trend toward lower exercise duration in O3 compared with room air (-10.8 ± 26.5%, P = 0.092). As decreases in O2 uptake and alterations in respiratory pattern were also present at matched time segments between conditions, a limitation of oxygen transport seems likely during maximal exercise. A more comprehensive understanding of the direct mechanisms that limit oxygen transport during exercise in high-pollutant concentrations is key for mitigating performance changes.NEW & NOTEWORTHY We demonstrate that in highly trained endurance athletes, exposure to peak real-world levels of O3 air pollution (170 ppb) significantly diminishes O2 uptake along with corresponding changes in ventilation during maximal exercise. As no differences were observed during extended submaximal exercise, a combined effect of effective dose of pollution and exercise intensity on severity of responses seems likely.


Asunto(s)
Atletas , Estudios Cruzados , Ejercicio Físico , Consumo de Oxígeno , Ozono , Humanos , Masculino , Adulto , Método Doble Ciego , Femenino , Consumo de Oxígeno/fisiología , Consumo de Oxígeno/efectos de los fármacos , Ejercicio Físico/fisiología , Contaminantes Atmosféricos/efectos adversos , Resistencia Física/fisiología , Resistencia Física/efectos de los fármacos , Ciclismo/fisiología , Adulto Joven , Prueba de Esfuerzo/métodos
3.
Front Aging Neurosci ; 15: 1093295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891558

RESUMEN

Introduction: Postural instability increases with age and is exacerbated in neurological disorders such as Parkinson's disease (PD). Reducing the base of support from bipedal to unipedal stance increases center of pressure (CoP) parameters and intermuscular coherence in lower-leg muscles of healthy older adults. To further develop an understanding of postural control in an altered state of neurological impairment, we explored intermuscular coherence in lower-leg muscles and CoP displacement in older adults with PD. Methods: This study measured surface EMG from the medial (MG) and lateral (LG) gastrocnemii, soleus (SOL), and tibialis anterior (TA), and examined EMG amplitude and intermuscular coherence during bipedal and unipedal stance on a force plate with firm (no foam) and compliant (standing on foam) surface conditions in nine older adults with PD (70±5 years, 6 females) and 8 age-matched non-Parkinsonian older adults (5 females). Intermuscular coherence was analyzed between agonist-agonist and agonist-antagonist muscle pairs in the alpha (8-13 Hz) and beta (15-35 Hz) frequency bands. Results: CoP parameters increased from bipedal to unipedal stance in both groups (p < 0.01), but did not increase from the firm to compliant surface condition (p > 0.05). During unipedal stance, CoP path length was shorter in older adults with PD (2027.9 ± 1074.1 mm) compared to controls (3128.5 ± 1198.7 mm) (p < 0.01). Alpha and beta agonist-agonist and agonist-antagonist coherence increased by 28% from bipedal to unipedal stance (p > 0.05), but did not differ between older adults with PD (0.09 ± 0.07) and controls (0.08 ± 0.05) (p > 0.05). The older adults with PD also had greater normalized EMG amplitude of the LG (63.5 ± 31.7%) and TA (60.6 ± 38.4%) during the balance tasks (p > 0.05) than the non-Parkinsonian counterparts. Discussion: Older adults with PD had shorter path lengths during unipedal stance and required greater muscle activation than older adults without PD to perform the tasks, but intermuscular coherence did not differ between the groups. This may be attributable to their early disease stage and high motor function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA