Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698368

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant primary brain cancer affecting adults. Therapeutic options for GBM have remained the same for over a decade with no significant improvement. Many therapies that are successful in culture have failed in patients, likely due to the complex microenvironment in the brain, which has yet to be reproduced in any culture model. Furthermore, the high passage number of cultured cells and clonal selection fail to recapitulate the molecular and genomic signatures of GBM. We have established orthotopic patient-derived xenografts (PDX) from 37 GBM patients with human GBM. Of the 69 patient samples analyzed, we were successful in passaging 37 lines three or more generations (53.6%). After phenotypic characterization of the xenografted tumor tissue, two different growth patterns emerged highly invasive or localized. The phenotype was dependent on malignancy and previous treatment of the patient from which the xenograft was derived. Physiologically, mice exhibited symptoms more quickly with each subsequent passage, particularly in the localized tumors. Study of these physiologically relevant human xenografts in mice will enable therapeutic screenings in a microenvironment that more closely resembles GBM and may allow development of individualized patient models which may eventually be used for simulating treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Anciano , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Alzheimers Dis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058444

RESUMEN

Background: Space radiation was linked to neurological damage and behavioral deficits which raised concerns of increased degenerative risk on the brain and development of Alzheimer's disease following space travel. Objective: In this study, we investigated the effects of irradiation by 56Fe and 28Si in CRND8 mice, an Alzheimer's disease mouse model. Methods: Six-month-old CRND8 mice were exposed to whole body irradiation by 56Fe and 28Si at 0.5 Gy and 2 Gy doses. Behavior tests were administered 1-month to 3-months post-irradiation. Amyloid deposition and other pathological changes were analyzed 3-months and/or 6-months post-irradiatio. Results: The Novel Object Recognition test showed some decline in 8-month-old mice compared to non-irradiated CRND8 mice. Male mice also showed a loss of freezing behavior in the fear conditioning contextual test following irradiation. Golgi staining revealed a loss of spines in hippocampal neurons after irradiation. Total amyloid immunohistochemistry showed a robust increase in 3-months post-irradiation 56Fe groups which became normalized to non-irradiated group by 6-months post-irradiation. However, 2 Gy 28Si caused a trend towards increased plaque load at 3-months post-irradiation which became significant at 6-months post irradiation only in male CRND8 mice. While 0.5 Gy Fe did not induce obvious changes in the total number of iba-1 positive microglia, more hippocampal microglia were found to express PCNA after 0.5 Gy Fe treatment, suggesting potential involvement of microglial dysfunction. Conclusions: Overall, our study provides new evidence of gender-specific and ion-dependent effects of space radiation on cognition and amyloid pathology in AD models.

3.
J Neural Transm (Vienna) ; 118(1): 23-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20972807

RESUMEN

CD3ζ is a subunit of the CD3 molecule that, until recently, appeared restricted to T cells and natural killer cells. However, experimental studies have demonstrated a role of CD3ζ in dendritic outgrowth in the visual system as well as in synaptic plasticity. Given the increasing evidence for uncharacteristic recapitulation of neurodevelopmental processes in neurodegenerative diseases, in this study, we evaluated brains from subjects with Parkinson's disease and Lewy body dementia for evidence of aberrant CD3 expression. Our data shows marked CD3ζ in association with the α-synuclein containing pathological lesions, i.e., Lewy bodies and Lewy neurites, in the brains of subjects with Parkinson's disease and Lewy body dementia. This finding raises the novel concept of CD3 dysregulation in these disorders as a pathogenic factor and also furthers the increasing evidence that the recall of aberrant neurodevelopmental processes underlies the pathogenesis of neurodegenerative diseases.


Asunto(s)
Complejo CD3/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Humanos , Inmunohistoquímica , Cuerpos de Lewy/patología , Cuerpos de Lewy/ultraestructura , Masculino , Persona de Mediana Edad , alfa-Sinucleína/metabolismo
4.
Neurooncol Adv ; 2(1): vdaa039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642694

RESUMEN

BACKGROUND: Improving the care of patients with glioblastoma (GB) requires accurate and reliable predictors of patient prognosis. Unfortunately, while protein markers are an effective readout of cellular function, proteomics has been underutilized in GB prognostic marker discovery. METHODS: For this study, GB patients were prospectively recruited and proteomics discovery using liquid chromatography-mass spectrometry analysis (LC-MS/MS) was performed for 27 patients including 13 short-term survivors (STS) (≤10 months) and 14 long-term survivors (LTS) (≥18 months). RESULTS: Proteomics discovery identified 11 941 peptides in 2495 unique proteins, with 469 proteins exhibiting significant dysregulation when comparing STS to LTS. We verified the differential abundance of 67 out of these 469 proteins in a small previously published independent dataset. Proteins involved in axon guidance were upregulated in STS compared to LTS, while those involved in p53 signaling were upregulated in LTS. We also assessed the correlation between LS MS/MS data with RNAseq data from the same discovery patients and found a low correlation between protein abundance and mRNA expression. Finally, using LC-MS/MS on a set of 18 samples from 6 patients, we quantified the intratumoral heterogeneity of more than 2256 proteins in the multisample dataset. CONCLUSIONS: These proteomic datasets and noted protein variations present a beneficial resource for better predicting patient outcome and investigating potential therapeutic targets.

5.
Cancers (Basel) ; 11(4)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974896

RESUMEN

Despite aggressive multi-modality treatment with surgery, radiation and chemotherapies, malignant glioma inevitably recurs and has dismal survival rates. Recent progress in immunotherapy has led to a resurgence of interest, and immunotherapies are being investigated for treatment of glioma. However, the unique brain anatomy and a highly immunosuppressive glioma microenvironment pose significant challenges to achieving efficacy. Thus, there is a critical need for assessment of next-generation immunotherapies for glioma. In this study, we have investigated the efficacy of the nanoparticle platform technology based on plant-derived Cowpea mosaic virus like particles (empty CPMV or eCPMV) to instigate a potent immune response against intracranial glioma. CPMV immunotherapy has been shown to efficiently reverse the immunosuppressive tumor microenvironments in pre-clinical murine models of dermal melanoma and metastatic melanoma, metastatic breast cancer, intraperitoneal ovarian cancer and in canine patients with oral melanoma. In the present study, we demonstrate that in situ administration of CPMV immunotherapy in the setting of glioma can effectively recruit unique subset of effector innate and adaptive immune cells to the brain parenchyma while reducing immune suppressive cellular population, leading to regression of intracranial glioma. The in situ CPMV nanoparticle vaccine offers a potent yet safe and localized immunotherapy for intracranial glioma.

6.
J Alzheimers Dis ; 12(2): 195-206, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17917164

RESUMEN

In this study, we evaluated the effect of lipoic acid (LA) and N-acetyl cysteine (NAC) on oxidative [4-hydroxy-2-nonenal, N(epsilon)-(carboxymethyl)lysine and heme oxygenase-1] and apoptotic (caspase 9 and Bax) markers in fibroblasts from patients with Alzheimer disease (AD) and age-matched and young controls. AD fibroblasts showed the highest levels of oxidative stress, and the antioxidants, lipoic acid (1 mM) and/or N-acetyl cysteine (100 microM) exerted a protective effect as evidenced by decreases in oxidative stress and apoptotic markers. Furthermore, we observed that the protective effect of LA and NAC was more pronounced when both agents were present simultaneously. AD-type changes could be generated in control fibroblasts using N-methylprotoporphyrin to inhibit cytochrome oxidase assembly indicating that the the oxidative damage observed was associated with mitochondrial dysfunction. The effects of N-methylprotoporphyrine were reversed or attenuated by both lipoic acid and N-acetyl cysteine. These data suggest mitochondria are important in oxidative damage that occurs in AD. As such, antioxidant therapies based on lipoic acid and N-acetyl cysteine supplementation may be promising.


Asunto(s)
Acetilcisteína/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácido Tióctico/farmacología , Acetilcisteína/administración & dosificación , Humanos , Inmunohistoquímica , Ácido Tióctico/administración & dosificación
7.
Curr Alzheimer Res ; 4(1): 67-72, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17316167

RESUMEN

Osteopontin (OPN) is a glycophosphoprotein expressed by several cell types and has pro-adhesive, chemotactic, and cytokine-like properties. OPN is involved in a number of physiologic and pathologic events including angiogenesis, apoptosis, inflammation, oxidative stress, remyelination, wound healing, bone remodeling, cell migration and tumorigenesis. Since these functions of OPN, and the events that it regulates, are involved with neurodegeneration, we examined whether OPN was differentially expressed in the hippocampus of the Alzheimer's disease (AD) compared with age-matched (59-93 years) control brain. We report for the first time the immunocytochemical localization of OPN in the cytoplasm of pyramidal neurons. In AD brains, there was a significant 41 % increase in the expression of neuron OPN compared with age-matched control brain. No staining of other neuronal cell types was observed. Additionally, there was a significant positive correlation between OPN staining intensity and both amyloid-beta load (r(2) = 0.25; P < 0.05; n = 20) and aging (r(2) = 0.32; P < 0.01; n = 20) among all control and AD subjects. Controlling for age indicated that OPN expression was significantly influenced by amyloid-beta load, but not age. While the functional consequences of this amyloid-beta associated increase in OPN expression are unclear, it is notable that OPN is primarily localized to those neurons that are known to be vulnerable to AD-related neurite loss, degeneration and death. Given that the induction of OPN expression (and amyloid-beta generation) is associated with remodeling and tumorigenesis, our results suggest that OPN may play a role in the aberrant re-entry of neurons into the cell cycle and/or neuronal remyelination in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Osteopontina/metabolismo , Células Piramidales/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Recuento de Células , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad
8.
J Neurol Sci ; 257(1-2): 240-6, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17337008

RESUMEN

Alzheimer disease and cerebrovascular dementia are two common causes of dementia and, by present diagnostic criteria, are mutually exclusive using vascular pathology as an arbitrary demarcation in differential diagnosis. However, evidence from epidemiological, neuropathological, clinical, pharmacological, and functional studies suggest considerable overlap in risk factors and pathological changes suggesting shared common pathogenic mechanisms between these two diseases such that vascular factors play a vital role in the pathogenesis of Alzheimer disease. A high energy demand and lack of an endogenous fuel reserve make the brain highly dependent upon a continuous blood supply where disruption of cerebral blood vessels and blood flow can have serious consequences on neural activities. Indeed, many studies implicate metabolic defects in Alzheimer disease, such a reduced brain metabolism is one of the best documented abnormalities in the disease. Notably, since endothelial reactive oxygen species such as nitric oxide act as vasodilators at low concentrations, increased production coupled with elevated reactive oxygen species scavenging of nitric oxide, can lead to reduced bioavailability of nitric oxide and increased oxidative stress that damage sensitive vascular cells. In this respect, we and others have demonstrated that oxidative stress is one of the earliest pathological changes in the brain of Alzheimer disease patients and plays a critical role in the vascular abnormalities underlying metabolic defects in Alzheimer disease. Here, we discuss vascular factors in relation to Alzheimer disease and review hypoperfusion as a potential cause by triggering mitochondrial dysfunction and increased oxidative stress initiating the pathogenic process.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Demencia Vascular/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular/fisiología , Demencia Vascular/fisiopatología , Humanos , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo
9.
Biochim Biophys Acta ; 1739(2-3): 211-5, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15615639

RESUMEN

Fibrillogenesis is a major feature of Alzheimer's disease (AD) and other neurodegenerative diseases. Fibers are correlated with disease severity and they have been implicated as playing a direct role in disease pathophysiology. In studies of tau, instead of finding causality with tau fibrils, we found that tau is associated with reduction of oxidative stress. Biochemical findings show that tau oxidative modifications are regulated by phosphorylation and that tau found in neurofibrillary tangles is oxidatively modified, suggesting that tau is closely linked to the biology, not toxicity, of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Guanosina/análogos & derivados , Ovillos Neurofibrilares/química , Estrés Oxidativo , Proteínas tau/metabolismo , Aldehídos/metabolismo , Animales , Guanosina/análisis , Humanos , Ratones , Degeneración Nerviosa , Fosforilación
10.
Neurosci Lett ; 406(3): 189-93, 2006 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-16919875

RESUMEN

Accumulating evidence suggests that oxidative stress may be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer disease. Contributing to this, there is a dyshomeostasis of metal ions in Alzheimer disease with abnormally high levels of redox-active metals, particularly iron, in affected areas of the brain. Although it is unclear whether metal excesses are the sole cause of oxidative stress and neurodegeneration or a by-product of neuronal loss, the finding that metal chelators can partially solubilize amyloid-beta deposits in Alzheimer disease suggests a promising therapeutic role for chelating agents. However, the blood-brain barrier and toxicity of known chelators limit their utility. In this study, we suggest that covalent conjugation of iron chelators with nanoparticles may help overcome the limitations in blood-brain barrier permeability of existing chelation therapy. Using in vitro studies, we have shown that a chelator-nanoparticle system and the chelator-nanoparticle system complexed with iron, when incubated with human plasma, preferentially adsorb apolipoprotein E and apolipoprotein A-I, that would facilitate transport into and out of the brain via mechanisms used for transporting low-density lipoprotein. Our studies suggest a unique approach, utilizing nanoparticles, to transport chelators and chelator-metal complexes in both directions across the blood-brain barrier, thus providing safer and more effective chelation treatment in Alzheimer disease and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/efectos de los fármacos , Quelantes del Hierro/farmacología , Hierro/metabolismo , Nanoestructuras , Piridonas/farmacología , Anciano de 80 o más Años , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Electroforesis en Gel Bidimensional/métodos , Humanos , Técnicas In Vitro , Quelantes del Hierro/química , Piridonas/química
11.
Age (Dordr) ; 28(1): 85-91, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23598681

RESUMEN

A number of recent studies have suggested that cardiac myocytes, previously considered post-mitotic, re-enter the cell cycle and possess the ability to proliferate with certain pathogenic stimuli. To study this further, we examined cellular proliferation in myocardial tissue from subjects with chronic ischemic heart disease-associated myocardial infarction and subsequent congestive heart failure. We found striking increases in cytoplasmic phospho-p27, a well-known mitotic regulator, compared to controls by both immunocytochemical and immunoblot analyses. However, we found no evidence for cardiac myocyte proliferation in either disease or control subjects using both mitotic counting (no mitotic figures were observed) and Ki-67 immunocytochemistry, which demonstrated a 0% proliferation index. That increased cytoplasmic phospho-p27 is not accompanied by division prompts us to speculate that ectopic cell cycle activation occurs in the face of minimal to absent myocyte proliferation per se. Based on these findings, and the parallel findings in post-mitotic neurons in neurodegenerative disease, we suggest that cell-cycle activation in ischemic heart disease is a deleterious event that perpetuates disease pathogenesis culminating in myocardial failure.

12.
Alzheimers Dement ; 2(3): 164-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19595878

RESUMEN

New approaches to the elucidation of Alzheimer disease, even those with solid data, are often ignored or dismissed as epiphenomenal when they differ from the mainstream or theoretical expectations. Here we present a new piece to the puzzle, decreases in telomere length, and telomerase expression in neuronal populations known to be vulnerable to degeneration and death in Alzheimer's disease. We can present the answers to the question "what," but the "why," "when," and "how" are not so easily answered. The goal of this report is to prompt discussion and more intensive study of this finding toward a new focus of therapeutic strategy.

13.
Free Radic Biol Med ; 38(6): 746-54, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15721985

RESUMEN

Several recent studies support a link between tau protein phosphorylation and adduction of tau by reactive carbonyls. Indeed, the phosphorylation-dependent adduction of tau by carbonyl products resulting from lipid peroxidation creates the neurofibrillary tangle-related antigen, Alz50. To determine whether epitopes of carbonyl-modified tau are major conformational changes associated with neurofibrillary tangle formation, we examined seven distinct antibodies raised against neurofibrillary tangles that recognize unique epitopes of tau in Alzheimer disease. Consistently, all seven antibodies recognize tau more strongly (4- to 34-fold) after treatment of normal tau with the reactive carbonyl, 4-hydroxy-2-nonenal (HNE), but only when tau is in the phosphorylated state. These findings not only support the idea that oxidative stress is involved in neurofibrillary tangle formation occurring in brains of Alzheimer disease patients, but also show, for the first time, that HNE modifications of tau promote and contribute to the generation of the major conformational properties defining neurofibrillary tangles.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Proteínas tau/química , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Aldehídos/química , Enfermedad de Alzheimer/metabolismo , Animales , Epítopos/química , Humanos , Inmunohistoquímica , Peroxidación de Lípido , Ratones , Modelos Genéticos , Estrés Oxidativo , Fosforilación , Conformación Proteica , Factores de Tiempo
14.
Aging Cell ; 3(1): 41-4, 2004 02.
Artículo en Inglés | MEDLINE | ID: mdl-14965355

RESUMEN

Oxidative abnormalities precede clinical and pathological manifestations of Alzheimer's disease and are the earliest pathological changes reported in the disease. The olfactory pathways and mucosa also display the pathological features associated with Alzheimer's disease in the brain. Olfactory neurons are unique because they can undergo neurogenesis and are able to be readily maintained in cell culture. In this study, we examined neuronal cell cultures derived from olfactory mucosa of Alzheimer's disease and control patients for oxidative stress responses. Levels of lipid peroxidation (hydroxynonenal), N(epsilon)-(carboxymethyl)lysine (glycoxidative and lipid peroxidation), and oxidative stress response (heme oxygenase-1) were measured immunocytochemically. We found increased levels for all the oxidative stress markers examined in Alzheimer's disease neurons as compared to controls. Interestingly, in one case of Alzheimer's disease, we found hydroxynonenal adducts accumulated in cytoplasmic lysosome-like structures in about 20% of neurons cultured, but not in neurons from control patients. These lysosome-like structures are found in about 100% of the vulnerable neurons in brains of cases of Alzheimer's disease. This study suggests that manifestations of oxidative imbalance in Alzheimer's disease extend to cultured olfactory neurons. Primary culture of human olfactory neurons will be useful in understanding the mechanism of oxidative damage in Alzheimer's disease and can even be utilized in developing therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/patología , Lisina/análogos & derivados , Neuronas/ultraestructura , Mucosa Olfatoria/citología , Estrés Oxidativo , Aldehídos/metabolismo , Enfermedad de Alzheimer/metabolismo , Línea Celular , Células Cultivadas , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1 , Humanos , Inmunohistoquímica , Peroxidación de Lípido , Lisina/metabolismo , Proteínas de la Membrana , Neuronas/química , Neuronas/patología
15.
Aging Cell ; 2(2): 105-10, 2003 04.
Artículo en Inglés | MEDLINE | ID: mdl-12882323

RESUMEN

A number of recent findings have demonstrated re-expression of cell cycle-related proteins in vulnerable neurones in Alzheimer's disease. We hypothesize that this attempt by neurones to re-enter mitosis is a response to external growth stimuli that leads to an abortive re-entry into the cell cycle and, ultimately, neuronal degeneration. In this study, to further delineate the role of mitotic processes in the pathogenesis of Alzheimer's disease, we investigated p27, a cyclin-dependent kinase inhibitor that plays a negatively regulatory role in cell cycle progression that, once phosphorylated at Thr187, is degraded via an ubiquitin-proteasome pathway. Here we report that both p27 and phosphorylated p27 (Thr187) show increases in the cytoplasm of vulnerable neuronal populations in Alzheimer's disease vs. age-matched control subjects. Importantly, phosphorylated p27 (Thr187) shows considerable overlap with tau-positive neurofibrillary pathology, including neurofibrillary tangles, dystrophic neurites and neuropil threads. The findings presented here suggest that dysregulation of the cell cycle plays a crucial role in the pathogenesis of Alzheimer's disease that may provide a novel mechanistic basis for therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/metabolismo , Proteínas Supresoras de Tumor/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Citoplasma/química , Femenino , Hipocampo/patología , Humanos , Masculino , Mitosis , Degeneración Nerviosa , Neuritas/química , Ovillos Neurofibrilares/química , Neurópilo/química , Fosforilación , Fosfotreonina/análisis , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Células Piramidales/patología , Lóbulo Temporal/patología , Proteínas tau/análisis
16.
Free Radic Biol Med ; 52(3): 699-704, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22137893

RESUMEN

Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins.


Asunto(s)
Aldehídos/metabolismo , Enfermedad de Alzheimer/patología , Peroxidación de Lípido , Procesamiento Proteico-Postraduccional , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Humanos , Lipofuscina/metabolismo , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo
17.
Redox Rep ; 12(3): 119-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17623518

RESUMEN

Cerebrotendinous xanthomatosis is an autosomal recessive disorder of bile acid synthesis, characterized by mutation in the mitochondrial enzyme 27-hydroxylase that leads to an accumulation of cholestanol and cholesterol. Characterized clinically by premature bilateral cataracts, slowly progressive neurological deterioration with dementia, cerebellar and brainstem signs, peripheral neuropathy, and seizures, the disease presents pathologically with lipid granulomata with foamy histiocytes and cholesterol clefts. Replacement therapy with chenodeoxycholic acid slows progression of the disease but does not reverse neurological deficits. Here, we present the case of a 49-year-old woman diagnosed at autopsy with cerebrotendinous xanthomatosis, on the basis of bilateral Achilles tendon granulomas, and typical foamy histiocytic infiltration of the brain, most severe in the dentate nucleus, and a typical clinical presentation. To investigate the pathological manifestations of this disease further, we performed immunohistochemistry for N(epsilon)-(carboxymethyl)-lysine, an indicator of oxidative damage, and found strong labeling of cytoplasmic material within histiocytes. In summary, this case of undiagnosed cerebrotendinous xanthomatosis during life emphasizes the need for a greater awareness of the disease, and early diagnosis and treatment. Further, the involvement of oxidative stress in cerebrotendinous xanthomatosis indicates that combined therapy with chenodeoxycholic acid and antioxidants may improve clinical outcome.


Asunto(s)
Estrés Oxidativo , Xantomatosis Cerebrotendinosa , Tendón Calcáneo/patología , Autopsia , Encéfalo/patología , Colestanotriol 26-Monooxigenasa/genética , Resultado Fatal , Femenino , Humanos , Persona de Mediana Edad , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/genética , Xantomatosis Cerebrotendinosa/patología , Xantomatosis Cerebrotendinosa/fisiopatología
18.
Mol Neurodegener ; 1: 14, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17018137

RESUMEN

BACKGROUND: Alzheimer disease (AD) is clinically characterized by progressive memory loss, impairments in behavior, language and visual-spatial skills and ultimately, death. Epidemiological data reporting the predisposition of women to AD has led to a number of lines of evidence suggesting that age-related changes in hormones of the hypothalamic-pituitary-gonadal (HPG) axis following reproductive senescence, may contribute to the etiology of AD. Recent studies from our group and others have reported not only increases in circulating gonadotropins, namely luteinizing hormone (LH) in individuals with AD compared with control individuals, but also significant elevations of LH in vulnerable neuronal populations in individuals with AD compared to control cases as well as the highest density of gonadotropin receptors in the brain are found within the hippocampus, a region devastated in AD. However, while LH is higher in AD patients, the downstream consequences of this are incompletely understood. To begin to examine this issue, here, we examined the expression levels of steroidogenic acute regulatory (StAR) protein, which regulates the first key event in steroidogenesis, namely, the transport of cholesterol into the mitochondria, and is regulated by LH through the cyclic AMP second messenger pathway, in AD and control brain tissue. RESULTS: Our data revealed that StAR protein was markedly increased in both the cytoplasm of hippocampal pyramidal neurons as well as in the cytoplasm of other non-neuronal cell types from AD brains when compared with age-matched controls. Importantly, and suggestive of a direct mechanistic link, StAR protein expression in AD brains colocalized with LH receptor expression. CONCLUSION: Therefore, our findings suggest that LH is not only able to bind to its receptor and induce potentially pathogenic signaling in AD, but also that steroidogenic pathways regulated by LH may play a role in AD.

19.
Curr Protoc Toxicol ; Chapter 17: Unit17.4, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23045100

RESUMEN

Abnormalities in redox and/or transition metal homeostasis is characteristic of many pathological states. Here, we present protocols that can be used for the detection of both transition metals and redox state.


Asunto(s)
Metales/metabolismo , Peroxidasas/metabolismo , Oxidación-Reducción , Ácido Pentético/química
20.
J Neurosci Res ; 70(3): 514-8, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12391612

RESUMEN

In individuals with Alzheimer's disease (AD), there is a two-fold elevation in the serum concentrations of the gonadotropins, luteinizing hormone (LH), and follicle stimulating hormone compared to age-matched controls. Whether this plays a role in disease pathogenesis is unclear. Nonetheless, gonadotropins are known to cross the blood brain barrier and the highest density of gonadotropin receptors in the brain are found within the hippocampus. We report for the first time the localization of LH in the cytoplasm of pyramidal neurons. In addition, we find a significant increase in LH in the cytoplasm of pyramidal neurons and neurofibrillary tangles of AD brain compared to age-matched control brain. Whereas the functional consequences of increased neuronal LH are unknown, it is notable that LH is primarily localized to those neurons that are known to be vulnerable to Alzheimer's disease-related neurodegeneration. Elevated serum and cortical neuron levels of LH, coupled with the decline in sex steroid production, could play important roles in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Hipocampo/metabolismo , Hormona Luteinizante/sangre , Células Piramidales/metabolismo , Regulación hacia Arriba/fisiología , Anciano , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Causalidad , Estrógenos/metabolismo , Retroalimentación/fisiología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Células Piramidales/patología , Receptores de HL/metabolismo , Caracteres Sexuales , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA