Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(7): 3030-3040, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869666

RESUMEN

The hybridization and dehybridization of DNA subject to tension is relevant to fundamental genetic processes and to the design of DNA-based mechanobiology assays. While strong tension accelerates DNA melting and decelerates DNA annealing, the effects of tension weaker than 5 pN are less clear. In this study, we developed a DNA bow assay, which uses the bending rigidity of double-stranded DNA (dsDNA) to exert weak tension on a single-stranded DNA (ssDNA) target in the range of 2-6 pN. Combining this assay with single-molecule FRET, we measured the hybridization and dehybridization kinetics between a 15 nt ssDNA under tension and a 8-9 nt oligonucleotide, and found that both the hybridization and dehybridization rates monotonically increase with tension for various nucleotide sequences tested. These findings suggest that the nucleated duplex in its transition state is more extended than the pure dsDNA or ssDNA counterpart. Based on coarse-grained oxDNA simulations, we propose that this increased extension of the transition state is due to steric repulsion between the unpaired ssDNA segments in close proximity to one another. Using linear force-extension relations verified by simulations of short DNA segments, we derived analytical equations for force-to-rate conversion that are in good agreement with our measurements.


Asunto(s)
ADN , Oligonucleótidos , Oligonucleótidos/genética , Hibridación de Ácido Nucleico , ADN/genética , ADN de Cadena Simple/genética , Fenómenos Mecánicos
2.
Semin Cell Dev Biol ; 86: 3-14, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499385

RESUMEN

Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.


Asunto(s)
Células Dendríticas/citología , Fenotipo , Células Dendríticas/inmunología , Humanos
3.
Semin Cell Dev Biol ; 86: 77-88, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29454038

RESUMEN

The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/trasplante , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Humanos , Linfocitos T/inmunología
4.
Haematologica ; 103(4): 655-665, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29351987

RESUMEN

Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies. CD83 from Hodgkin lymphoma tumor cells was able to trogocytose to surrounding T cells and, interestingly, the trogocytosing CD83+T cells expressed significantly more programmed death-1 compared to CD83-T cells. Hodgkin lymphoma tumor cells secreted soluble CD83 that inhibited T-cell proliferation, and anti-CD83 antibody partially reversed the inhibitory effect. High levels of soluble CD83 were detected in Hodgkin lymphoma patient sera, which returned to normal in patients who had good clinical responses to chemotherapy confirmed by positron emission tomography scans. We generated a human anti-human CD83 antibody, 3C12C, and its toxin monomethyl auristatin E conjugate, that killed CD83 positive Hodgkin lymphoma cells but not CD83 negative cells. The 3C12C antibody was tested in dose escalation studies in non-human primates. No toxicity was observed, but there was evidence of CD83 positive target cell depletion. These data establish CD83 as a potential biomarker and therapeutic target in Hodgkin lymphoma.


Asunto(s)
Antígenos CD/sangre , Biomarcadores de Tumor/sangre , Enfermedad de Hodgkin/tratamiento farmacológico , Inmunoglobulinas/sangre , Glicoproteínas de Membrana/sangre , Terapia Molecular Dirigida/métodos , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/inmunología , Femenino , Enfermedad de Hodgkin/diagnóstico , Humanos , Inmunoglobulinas/inmunología , Masculino , Glicoproteínas de Membrana/inmunología , Persona de Mediana Edad , Terapia Recuperativa/métodos , Linfocitos T/citología , Adulto Joven , Antígeno CD83
5.
J Immunol ; 197(3): 885-98, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316686

RESUMEN

C-type lectin receptors play important roles in immune cell interactions with the environment. We described CD302 as the simplest, single domain, type I C-type lectin receptor and showed it was expressed mainly on the myeloid phagocytes in human blood. CD302 colocalized with podosomes and lamellopodia structures, so we hypothesized that it played a role in cell adhesion or migration. In this study, we used mouse models to obtain further insights into CD302 expression and its potential immunological function. Mouse CD302 transcripts were, as in humans, highest in the liver, followed by lungs, lymph nodes (LN), spleen, and bone marrow. In liver, CD302 was expressed by hepatocytes, liver sinusoidal endothelial cells, and Kupffer cells. A detailed analysis of CD302 transcription in mouse immune cells revealed highest expression by myeloid cells, particularly macrophages, granulocytes, and myeloid dendritic cells (mDC). Interestingly, 2.5-fold more CD302 was found in migratory compared with resident mDC populations and higher CD302 expression in mouse M1 versus M2 macrophages was also noteworthy. CD302 knockout (CD302KO) mice were generated. Studies on the relevant immune cell populations revealed a decrease in the frequency and numbers of migratory mDC within CD302KO LN compared with wild-type LN. In vitro studies showed CD302KO and wild-type DC had an equivalent capacity to undergo maturation, prime T cells, uptake Ags, and migrate toward the CCL19/CCL21 chemokines. Nevertheless, CD302KO migratory DC exhibited reduced in vivo migration into LN, confirming a functional role for CD302 in mDC migration.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Línea Celular , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa
6.
J Immunol ; 197(12): 4613-4625, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27837105

RESUMEN

CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.


Asunto(s)
Antígenos CD/metabolismo , Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Monocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Enfermedad Aguda , Animales , Antígenos CD/genética , Antígenos Virales/inmunología , Células Cultivadas , Glicosilación , Humanos , Inmunoglobulinas/genética , Activación de Linfocitos , Glicoproteínas de Membrana/genética , Ratones , Isoformas de ARN/genética , ARN Mensajero/genética , Trasplante Homólogo , Antígeno CD83
7.
Pharmacol Rev ; 67(4): 731-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240218

RESUMEN

Although the earliest­rudimentary­attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.


Asunto(s)
Células Dendríticas/metabolismo , Inmunoterapia Activa/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Traslado Adoptivo/métodos , Anticuerpos Monoclonales , Antígenos de Neoplasias/inmunología , Apoptosis , Vacunas contra el Cáncer/inmunología , Técnicas de Cultivo de Célula , Citocinas/biosíntesis , Células Dendríticas/inmunología , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Humanos , Células Asesinas Naturales/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Transducción de Señal
8.
Immunol Cell Biol ; 94(5): 447-57, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26791160

RESUMEN

Human plasmacytoid dendritic cells (pDCs) were considered to be a phenotypically and functionally homogeneous cell population; however, recent analyses indicate potential heterogeneity. This is of major interest, given their importance in the induction of anti-viral responses and their role in creating immunologically permissive environments for human malignancies. For this reason, we investigated the possible presence of human pDC subsets in blood and bone marrow, using unbiased cell phenotype clustering and functional studies. This defined two major functionally distinct human pDC subsets, distinguished by differential expression of CD2. The CD2(hi) and CD2(lo) pDCs represent discontinuous subsets, each with hallmark pDC functionality, including interferon-alpha production. The rarer CD2(hi) pDC subset demonstrated a significant survival advantage over CD2(lo) pDC during stress and upon exposure to glucocorticoids (GCs), which was associated with higher expression of the anti-apoptotic molecule BCL2. The differential sensitivity of these two human pDC subsets to GCs is demonstrated in vivo by a relative increase in CD2(hi) pDC in multiple myeloma patients treated with GCs. Hence, the selective apoptosis of CD2(lo) pDC during stress represents a novel mechanism for the control of innate responses.


Asunto(s)
Antígenos CD2/metabolismo , Células Dendríticas/metabolismo , Estrés Fisiológico , Apoptosis/efectos de los fármacos , Médula Ósea/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Ligandos , Ganglios Linfáticos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Inmunológicos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Receptores Toll-Like/metabolismo
9.
Br J Haematol ; 164(4): 481-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321020

RESUMEN

Novel therapies with increased efficacy and decreased toxicity are desperately needed for the treatment of acute myeloid leukaemia (AML). The anti CD33 immunoconjugate, gemtuzumab ozogamicin (GO), was withdrawn with concerns over induction mortality and lack of efficacy. However a number of recent trials suggest that, particularly in AML with favourable cytogenetics, GO may improve overall survival. This data and the development of alternative novel monoclonal antibodies (mAb) have renewed interest in the area. Leukaemic stem cells (LSC) are identified as the subset of AML blasts that reproduces the leukaemic phenotype upon transplantation into immunosuppressed mice. AML relapse may be caused by chemoresistant LSC and this has refocused interest on identifying and targeting antigens specific for LSC. Several mAb have been developed that target LSC effectively in xenogeneic models but only a few have begun clinical evaluation. Antibody engineering may improve the activity of potential new therapeutics for AML. The encouraging results seen with bispecific T cell-engaging mAb-based molecules against CD19 in the treatment of B-cell acute lymphobalstic leukaemia, highlight the potential efficacy of engineered antibodies in the treatment of acute leukaemia. Potent engineered mAb, possibly targeting novel LSC antigens, offer hope for improving the current poor prognosis for AML.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/radioterapia
10.
Blood ; 120(10): 2055-63, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22705596

RESUMEN

The transfer of membrane proteins between cells during contact, known as trogocytosis, can create novel cells with a unique phenotype and altered function. We demonstrate that trogocytosis is more common in multiple myeloma (MM) than chronic lymphocytic leukemia and Waldenstrom macroglobulinaemia; that T cells are more probable to be recipients than B or natural killer cells; that trogocytosis occurs independently of either the T-cell receptor or HLA compatibility; and that after trogocytosis, T cells with acquired antigens can become novel regulators of T-cell proliferation. We screened 168 patients with MM and found that CD86 and human leukocyte antigen G (HLA-G) were antigens commonly acquired by T cells from malignant plasma cells. CD3+ CD86acq+ and CD3+ HLA-Gacq+ cells were more prevalent in bone marrow than peripheral blood samples. The presence of either CD86 or HLA-G on malignant plasma cells was associated with a poor prognosis. CD38++ side population cells expressed HLA-G, suggesting that these putative myeloma stem cells could generate immune tolerance. HLA-G+ T cells had a regulatory potency similar to natural Tregs, thus providing another novel mechanism for MM to avoid effective immune surveillance.


Asunto(s)
Antígeno B7-2/inmunología , Antígenos HLA-G/inmunología , Leucemia Linfocítica Crónica de Células B/metabolismo , Mieloma Múltiple/metabolismo , Células Plasmáticas/inmunología , Macroglobulinemia de Waldenström/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores/análisis , Membrana Celular/inmunología , Membrana Celular/metabolismo , Proliferación Celular , Humanos , Tolerancia Inmunológica , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/mortalidad , Mieloma Múltiple/inmunología , Mieloma Múltiple/mortalidad , Especificidad de Órganos , Células Plasmáticas/metabolismo , Pronóstico , Transporte de Proteínas/inmunología , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Macroglobulinemia de Waldenström/inmunología , Macroglobulinemia de Waldenström/mortalidad
11.
Eur J Immunol ; 42(6): 1512-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22678905

RESUMEN

Human blood myeloid DCs can be subdivided into CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) subsets that display unique gene expression profiles, suggesting specialized functions. CD1c(+) DCs express TLR4 while CD141(+) DCs do not, thus predicting that these two subsets have differential capacities to respond to Escherichia coli. We isolated highly purified CD1c(+) and CD141(+) DCs and compared them to in vitro generated monocyte-derived DCs (MoDCs) following stimulation with whole E. coli. As expected, MoDCs produced high levels of the proinflammatory cytokines TNF, IL-6, and IL-12, were potent inducers of Th1 responses, and processed E. coli-derived Ag. In contrast, CD1c(+) DCs produced only low levels of TNF, IL-6, and IL-12 and instead produced high levels of the anti-inflammatory cytokine IL-10 and regulatory molecules IDO and soluble CD25. Moreover, E. coli-activated CD1c(+) DCs suppressed T-cell proliferation in an IL-10-dependent manner. Contrary to their mouse CD8(+) DC counterparts, human CD141(+) DCs did not phagocytose or process E. coli-derived Ag and failed to secrete cytokines in response to E. coli. These data demonstrate substantial differences in the nature of the response of human blood DC subsets to E. coli.


Asunto(s)
Antígenos de Superficie/análisis , Células Dendríticas/inmunología , Escherichia coli/inmunología , Interleucina-10/biosíntesis , Células Mieloides/inmunología , Antígenos CD1 , Células Dendríticas/metabolismo , Glicoproteínas , Humanos , Interleucina-10/metabolismo , Activación de Linfocitos , Fenotipo , Linfocitos T/inmunología , Trombomodulina
12.
J Immunol ; 187(8): 3987-96, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21908738

RESUMEN

The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8αα and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-γ and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Efecto Injerto vs Tumor/inmunología , Mieloma Múltiple/inmunología , Traslado Adoptivo , Animales , Línea Celular Tumoral , Separación Celular , Citotoxicidad Inmunológica/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante Homólogo
13.
J Exp Med ; 203(1): 27-33, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16390938

RESUMEN

Langerhans cells (LC) and other antigen-presenting cells are believed to be critical in initiating graft versus host responses that influence the outcome of allogeneic hematopoietic stem cell transplantation. However, their fate in humans is poorly understood. We have sought to define the effect of conditioning regimes and graft versus host disease (GVHD) on the survival of recipient LC and reconstitution of donor cells after transplant. Confocal microscopy of epidermal sheets shows that full intensity transplant (FIT) depletes LC more rapidly than reduced intensity transplant (RIT) at day 0, although the nadir is similar in both at 14-21 d. Recovery occurs rapidly within 40 d in the absence of acute GVHD, but is delayed beyond 100 d when GVHD is active. LC chimerism was determined in sex-mismatched transplants using a two-step Giemsa/fluorescence in situ hybridization assay on isolated cells. Acquisition of donor chimerism at 40 d is more rapid after FIT (97%) than RIT (36.5%), irrespective of blood myeloid engraftment. At 100 d, all transplants achieve at least 90% LC donor chimerism and over half achieve 100%. Complete donor chimerism is associated with prior acute cutaneous GVHD, suggesting a role for allogeneic T cells in promoting LC engraftment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células de Langerhans , Adulto , Femenino , Enfermedad Injerto contra Huésped , Humanos , Masculino , Persona de Mediana Edad , Quimera por Trasplante , Acondicionamiento Pretrasplante
14.
Cancer Immunol Immunother ; 61(2): 169-179, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21874303

RESUMEN

Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Calicreínas/metabolismo , Fragmentos de Péptidos/metabolismo , Neoplasias de la Próstata/inmunología , Linfocitos T Citotóxicos/metabolismo , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Proliferación Celular , Biología Computacional , Células Dendríticas/inmunología , Femenino , Antígeno HLA-A2/metabolismo , Humanos , Epítopos Inmunodominantes/genética , Calicreínas/inmunología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/inmunología , Neoplasias de la Próstata/patología , Señales de Clasificación de Proteína/genética , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología
15.
Blood ; 116(16): e74-80, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20628149

RESUMEN

Monocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface markers and flow cytometry, and subpopulations have been described. The present document proposes a nomenclature for these cells and defines 3 types of monocytes (classical, intermediate, and nonclassical monocytes) and 3 types of dendritic cells (plasmacytoid and 2 types of myeloid dendritic cells) in human and in mouse blood. This classification has been approved by the Nomenclature Committee of the International Union of Immunological Societies, and we are convinced that it will facilitate communication among experts and in the wider scientific community.


Asunto(s)
Células Sanguíneas/clasificación , Células Dendríticas/clasificación , Monocitos/clasificación , Terminología como Asunto , Animales , Humanos , Ratones
16.
Immunology ; 132(2): 296-305, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21091907

RESUMEN

Mannose-binding lectin (MBL) is a serum lectin that plays a significant role in innate host defence. Individuals with mutations in exon 1 of the MBL2 gene have reduced MBL ligand binding and complement activation function and increased incidence of infection. We proposed that, during infection, MBL deficiency may impact on dendritic cell (DC) function. We analysed the blood myeloid DC (MDC) surface phenotype, inflammatory cytokine production and antigen-presenting capacity in MBL-deficient (MBL-D) individuals and MBL-sufficient (MBL-S) individuals using whole blood culture supplemented with zymosan (Zy) or MBL-opsonized zymosan (MBL-Zy) as a model of infection. Zy-stimulated MDCs from MBL-D individuals had significantly increased production of interleukin (IL)-6 and tumour necrosis factor (TNF)-α. Stimulation with MBL-Zy significantly decreased IL-6 production by MDCs from MBL-D, but had no effect on TNF-α production. MDCs from both MBL-S and MBL-D individuals up-regulated expression of the activation molecule CD83, and down-regulated expression of homing (CXCR4), adhesion (CD62L, CD49d) and costimulatory (CD40, CD86) molecules in response to Zy and MBL-Zy. MDC from both MBL-D and MBL-S individuals induced proliferation of allogeneic (allo) T cells following Zy or MBL-Zy stimulation; however, MBL-D individuals demonstrated a reduced capacity to induce effector allo-T cells. These data indicate that MBL deficiency is associated with unique functional characteristics of pathogen-stimulated blood MDCs manifested by increased production of IL-6, combined with a poor capacity to induce effector allo-T-cell responses. In MBL-D individuals, these functional features of blood MDCs may influence their ability to mount an immune response.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Interleucina-6/metabolismo , Lectina de Unión a Manosa/deficiencia , Células Mieloides/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Ratones , Células Mieloides/citología , Células Mieloides/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Zimosan/inmunología , Zimosan/farmacología
17.
J Hepatol ; 53(4): 599-607, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20667615

RESUMEN

BACKGROUND & AIMS: HCV patients who fail conventional interferon-based therapy have limited treatment options. Dendritic cells are central to the priming and development of antigen-specific CD4(+) and CD8(+) T cell immunity, necessary to elicit effective viral clearance. The aim of the study was to investigate the safety and efficacy of vaccination with autologous dendritic cells loaded with HCV-specific cytotoxic T cell epitopes. METHODS: We examined the potential of autologous monocyte-derived dendritic cells (MoDC), presenting HCV-specific HLA A2.1-restricted cytotoxic T cell epitopes, to influence the course of infection in six patients who failed conventional therapy. Dendritic cells were loaded and activated ex vivo with lipopeptides. In this phase 1 dose escalation study, all patients received a standard dose of cells by the intradermal route while sequential patients received an increased dose by the intravenous route. RESULTS: No patient showed a severe adverse reaction although all experienced transient minor side effects. HCV-specific CD8(+) T cell responses were enumerated in PBMC by ELIspot for interferon-gamma. Patients generated de novo responses, not only to peptides presented by the cellular vaccine but also to additional viral epitopes not represented in the lipopeptides, suggestive of epitope spreading. Despite this, no increases in ALT levels were observed. However, the responses were not sustained and failed to influence the viral load, the anti-HCV core antibody response and the level of circulating cytokines. CONCLUSIONS: Immunotherapy using autologous MoDC pulsed with lipopeptides was safe, but was unable to generate sustained responses or alter the outcome of the infection. Alternative dosing regimens or vaccination routes may need to be considered to achieve therapeutic benefit.


Asunto(s)
Células Dendríticas/inmunología , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/prevención & control , Vacunación , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
18.
Blood ; 112(4): 1184-94, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18535206

RESUMEN

Activation of human plasmacytoid dendritic cells (pDCs) with ligands for Toll-like receptors (TLRs) 7 and 9 induces the secretion of type I interferons and other inflammatory cytokines as well as pDC differentiation. Transcripts for 2 members of the CD300 gene family, CD300a and CD300c, were identified on pDCs during gene expression studies to identify new immunoregulatory molecules on pDCs. We therefore investigated the expression of CD300a and CD300c and their potential regulation of pDC function. CD300a/c RNA and surface expression were downregulated after stimulation of pDCs with TLR7 and TLR9 ligands. Exogenous interferon (IFN)-alpha down-regulated CD300a/c expression, whereas neutralizing IFN-alpha abolished TLR ligand-induced CD300a/c down-regulation. This implicates IFN-alpha in regulating CD300a/c expression in pDCs. In addition, IFN-alpha favored tumor necrosis factor (TNF)-alpha secretion by CpG-induced pDCs. CD300a/c triggering by cross-linking antibody reduced TNF-alpha and increased IFN-alpha secretion by pDCs. Furthermore, CD300a/c triggering, in the presence of neutralizing IFN-alpha, further reduced TNF-alpha secretion. These data indicate that CD300a and CD300c play an important role in the cross-regulation of TNF-alpha and IFN-alpha secretion from pDCs.


Asunto(s)
Antígenos CD/fisiología , Antígenos de Superficie/fisiología , Células Dendríticas/citología , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/fisiología , Receptores Inmunológicos/fisiología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 9/agonistas , Factor de Necrosis Tumoral alfa/metabolismo , Antígenos CD/genética , Antígenos de Superficie/genética , Diferenciación Celular , Células Cultivadas , Regulación hacia Abajo , Perfilación de la Expresión Génica , Humanos , Ligandos , Glicoproteínas de Membrana/genética , ARN Mensajero/análisis , Receptores Inmunológicos/genética
19.
Haematologica ; 95(12): 2102-10, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20801899

RESUMEN

BACKGROUND: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. DESIGN AND METHODS: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2(b)]→BALB/c [H-2(d)] and the sibling transplant mimic, UBI-GFP/BL6 [H-2(b)]→BALB.B [H-2(b)]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. RESULTS: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. CONCLUSIONS: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells' effectiveness in attenuating graft-versus-host disease.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Mesenquimatosas/inmunología , Células del Estroma/inmunología , Animales , Células Cultivadas , Técnicas de Cocultivo , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Enfermedad Injerto contra Huésped/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Células del Estroma/citología , Células del Estroma/metabolismo , Análisis de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo
20.
Clin Transl Immunology ; 9(7): e1156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685149

RESUMEN

OBJECTIVES: Effective antibody-drug conjugates (ADCs) provide potent targeted cancer therapies. CD83 is expressed on activated immune cells including B cells and is a therapeutic target for Hodgkin lymphoma. Our objective was to determine CD83 expression on non-Hodgkin lymphoma (NHL) and its therapeutic potential to treat mantle cell lymphoma (MCL) which is currently an incurable NHL. METHODS: We analysed CD83 expression on MCL cell lines and the lymph node/bone marrow biopsies of MCL patients. We tested the killing effect of CD83 ADC in vitro and in an in vivo xenograft MCL mouse model. RESULTS: CD83 is expressed on MCL, and its upregulation is correlated with the nuclear factor κB (NF-κB) activation. CD83 ADC kills MCL in vitro and in vivo. Doxorubicin and cyclophosphamide (CP), which are included in the current treatment regimen for MCL, enhance the NF-κB activity and increase CD83 expression on MCL cell lines. The combination of CD83 ADC with doxorubicin and CP has synergistic killing effect of MCL. CONCLUSION: This study provides evidence that a novel immunotherapeutic agent CD83 ADC, in combination with chemotherapy, has the potential to enhance the efficacy of current treatments for MCL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA