Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Transl Immunology ; 5(4): e68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27195111

RESUMEN

HLDA10 collated a panel of monoclonal antibodies (mAbs) that primarily recognised molecules on human myeloid cell and dendritic cell (DC) populations. As part of the studies, we validated a backbone of mAbs to delineate monocyte and DC populations from peripheral blood. The mAb backbone allowed identification of monocyte and DC subsets using fluorochromes that were compatible with most 'off the shelf' or routine flow cytometers. Three laboratories used this mAb backbone to assess the HLDA10 panel on blood monocytes and DCs. Each laboratory was provided with enough mAbs to perform five repeat experiments. The data were collated and analysed using Spanning-tree Progression Analysis of Density-normalised Events (SPADE). The data were interrogated for inter- and intra-laboratory variability. The results highlight the definition of DC populations using current readily available reagents. This collaborative process provides the broader scientific community with an invaluable data set that validates mAbs to leucocyte surface molecules.

2.
Clin Transl Immunology ; 5(1): e61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26900474

RESUMEN

HLDA10 is the Tenth Human Leukocyte Differentiation Antigen (HLDA) Workshop. The HLDA Workshops provide a mechanism to allocate cluster of differentiation (CD) nomenclature by engaging in interlaboratory studies. As the host laboratory, we invited researchers from national and international academic and commercial institutions to submit monoclonal antibodies (mAbs) to human leukocyte surface membrane molecules, particularly those that recognised molecules on human myeloid cell populations and dendritic cells (DCs). These mAbs were tested for activity and then distributed as a blinded panel to 15 international laboratories to test on different leukocyte populations. These populations included blood DCs, skin-derived DCs, tonsil leukocytes, monocyte-derived DCs, CD34-derived DCs, macrophage populations and diagnostic acute myeloid leukaemia and lymphoma samples. Each laboratory was provided with enough mAb to perform five repeat experiments. Here, we summarise the reactivity of different mAb to 68 different cell-surface molecules expressed by human myeloid and DC populations. Submitted mAbs to some of the molecules were further validated to collate data required to designate a formal CD number. This collaborative process provides the broader scientific community with an invaluable data set validating mAbs to leukocyte-surface molecules.

3.
Immunol Cell Biol ; 80(3): 216-25, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12067408

RESUMEN

Differentiation of CD34(+) haematopoietic stem cells into functional dendritic cells (DC) was investigated using the mAb CMRF-44 and other mAb against DC-associated markers. GM-CSF mobilized peripheral blood stem cells were obtained from healthy donors by leukapheresis. CD34(+) cells were purified using CD34(+)-positive selection,and subsequent immunomagnetic depletion of CD14 and CD2 cells. CD34(+) cells were cultured in medium supplemented with one or more of GM-CSF,TNF-alpha, IL-4 or IL-6. CMRF-44 Ag expression was monitored by flow cytometry, and DC function by allogeneic MLR and tetanus toxoid(TT) presentation assays. CD34(+) cells quickly acquired the CMRF-44 Ag when cultured in the presence of TNF-alpha. By day 3, more than 50% of the cells were double-positive for CD34 and CMRF-44. CD34 expression was gradually lost, so that by day 9, the majority of the cells were CD34(-)/CMRF-44(+).GM-CSF and TNF-alpha also induced CD40 expression, and up-regulation of CD54 and MHC class II on CD34(+) cells; their expression was correlated to the CMRF-44 Ag. Day 3 CD34(+)/CMRF-44(+) cells,but not CD34(+)/CMRF-44(-) cells, become potent APC when cultured further with GM-CSF plus TNF-alpha. These CMRF-44(+) cells were potent inducers of Th1-type immune response in the primary allogeneic MLR and present TT to autologous CD4(+) T cells. TNF-alpha alone is sufficient to induce CMRF-44 expression on CD34(+) cells, but in combination with GM-CSF expands the CMRF-44(+) population. CMRF-44 expression correlates with DC function and may be a useful early marker for commitment of CD34(+) cells to the DC differentiation pathway.


Asunto(s)
Antígenos CD34/análisis , Antígenos de Diferenciación/metabolismo , Células Dendríticas/inmunología , Células Madre Hematopoyéticas/fisiología , Anticuerpos Monoclonales/inmunología , Antígenos CD34/genética , Diferenciación Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Madre Hematopoyéticas/química , Humanos , Interleucina-4/farmacología , Interleucina-6/farmacología , Lipopolisacáridos/farmacología , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA