Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Immunol ; 201(3): 971-981, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934472

RESUMEN

Immune exhaustion is an important feature of chronic infections, such as HIV, and a barrier to effective immunity against cancer. This dysfunction is in part controlled by inhibitory immune checkpoints. Blockade of the PD-1 or IL-10 pathways can reinvigorate HIV-specific CD4 T cell function in vitro, as measured by cytokine secretion and proliferative responses upon Ag stimulation. However, whether this restoration of HIV-specific CD4 T cells can improve help to other cell subsets impaired in HIV infection remains to be determined. In this study, we examine a cohort of chronically infected subjects prior to initiation of antiretroviral therapy (ART) and individuals with suppressed viral load on ART. We show that IFN-γ induction in NK cells upon PBMC stimulation by HIV Ag varies inversely with viremia and depends on HIV-specific CD4 T cell help. We demonstrate in both untreated and ART-suppressed individuals that dual PD-1 and IL-10 blockade enhances cytokine secretion of NK cells via restored HIV-specific CD4 T cell function, that soluble factors contribute to these immunotherapeutic effects, and that they depend on IL-2 and IL-12 signaling. Importantly, we show that inhibition of the PD-1 and IL-10 pathways also increases NK degranulation and killing of target cells. This study demonstrates a previously underappreciated relationship between CD4 T cell impairment and NK cell exhaustion in HIV infection, provides a proof of principle that reversal of adaptive immunity exhaustion can improve the innate immune response, and suggests that immune checkpoint modulation that improves CD4/NK cell cooperation can be used as adjuvant therapy in HIV infection.


Asunto(s)
Antirretrovirales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Estudios de Cohortes , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Interferón gamma/inmunología , Interleucina-10/inmunología , Interleucina-2/inmunología , Células K562 , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Receptor de Muerte Celular Programada 1/inmunología , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
2.
J Virol ; 88(5): 2508-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352453

RESUMEN

UNLABELLED: Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. IMPORTANCE: Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , VIH-1/inmunología , Interleucina-10/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Anticuerpos Monoclonales/farmacología , Células Presentadoras de Antígenos/virología , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Citocinas/biosíntesis , Epítopos de Linfocito T/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Humanos , Interferón gamma/metabolismo , Subunidad alfa del Receptor de Interleucina-10/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Blood ; 121(5): 801-11, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23233659

RESUMEN

UNLABELLED: The development of immunomonitoring models to determine HIV-1 vaccine efficacy is a major challenge. Studies suggest that HIV-1­specific CD8 T cells play a critical role in subjects achieving spontaneous viral control (HIV-1 controllers) and that they will be important in immune interventions. However, no single CD8 T-cell function is uniquely associated with controller status and the heterogeneity of responses targeting different epitopes further complicates the discovery of determinants of protective immunity. In the present study, we describe immunomonitoring models integrating multiple functions of epitope-specific CD8 T cells that distinguish controllers from subjects with treated or untreated progressive infection. Models integrating higher numbers of variables and trained with the least absolute shrinkage and selection operator (LASSO) variant of logistic regression and 10-fold cross-validation produce "diagnostic tests" that display an excellent capacity to delineate subject categories. The test accuracy reaches 75% area under the receiving operating characteristic curve in cohorts matched for prevalence of protective alleles. Linear mixed-effects model analyses show that the proliferative capacity, cytokine production, and kinetics of cytokine secretion are associated with HIV-1 control. Although proliferative capacity is the strongest single discriminant, integrated modeling of different dimensions of data leverages individual associations. This strategy may have important applications in predictive model development and immune monitoring of HIV-1 vaccine trials. KEY POINTS: Immune monitoring models integrating multiple functions of HIV-1-specific CD8 T cells distinguish controllers from subjects with progressive HIV-1 infection. This strategy may have important applications in predictive model development and immune monitoring of HIV-1 vaccine trials.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Vigilancia Inmunológica , Modelos Inmunológicos , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/uso terapéutico , Adulto , Linfocitos T CD8-positivos/patología , Citocinas/inmunología , Femenino , Infecciones por VIH/patología , Infecciones por VIH/terapia , Humanos , Cinética , Masculino , Persona de Mediana Edad
4.
Nat Med ; 30(4): 1013-1022, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538867

RESUMEN

Therapeutic vaccines that elicit cytotoxic T cell responses targeting tumor-specific neoantigens hold promise for providing long-term clinical benefit to patients with cancer. Here we evaluated safety and tolerability of a therapeutic vaccine encoding 20 shared neoantigens derived from selected common oncogenic driver mutations as primary endpoints in an ongoing phase 1/2 study in patients with advanced/metastatic solid tumors. Secondary endpoints included immunogenicity, overall response rate, progression-free survival and overall survival. Eligible patients were selected if their tumors expressed one of the human leukocyte antigen-matched tumor mutations included in the vaccine, with the majority of patients (18/19) harboring a mutation in KRAS. The vaccine regimen, consisting of a chimp adenovirus (ChAd68) and self-amplifying mRNA (samRNA) in combination with the immune checkpoint inhibitors ipilimumab and nivolumab, was shown to be well tolerated, with observed treatment-related adverse events consistent with acute inflammation expected with viral vector-based vaccines and immune checkpoint blockade, the majority grade 1/2. Two patients experienced grade 3/4 serious treatment-related adverse events that were also dose-limiting toxicities. The overall response rate was 0%, and median progression-free survival and overall survival were 1.9 months and 7.9 months, respectively. T cell responses were biased toward human leukocyte antigen-matched TP53 neoantigens encoded in the vaccine relative to KRAS neoantigens expressed by the patients' tumors, indicating a previously unknown hierarchy of neoantigen immunodominance that may impact the therapeutic efficacy of multiepitope shared neoantigen vaccines. These data led to the development of an optimized vaccine exclusively targeting KRAS-derived neoantigens that is being evaluated in a subset of patients in phase 2 of the clinical study. ClinicalTrials.gov registration: NCT03953235 .


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Humanos , Antígenos de Neoplasias , Vacunas contra el Cáncer/efectos adversos , Antígenos HLA , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Vacunas/uso terapéutico
5.
J Virol ; 86(12): 6586-94, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496237

RESUMEN

T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14(+) monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Interleucina-10/inmunología , Monocitos/inmunología , Linfocitos T Reguladores/inmunología , Regulación hacia Arriba , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Interferón gamma/inmunología , Interleucina-10/sangre , Subunidad alfa del Receptor de Interleucina-2/inmunología , Leucocitos Mononucleares/inmunología
6.
Nat Commun ; 14(1): 3274, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280238

RESUMEN

SARS-CoV-2 has resulted in high levels of morbidity and mortality world-wide, and severe complications can occur in older populations. Humoral immunity induced by authorized vaccines wanes within 6 months, and frequent boosts may only offer transient protection. GRT-R910 is an investigational self-amplifying mRNA (samRNA)-based SARS-CoV-2 vaccine delivering full-length Spike and selected conserved non-Spike T cell epitopes. This study reports interim analyses for a phase I open-label dose-escalation trial evaluating GRT-R910 in previously vaccinated healthy older adults (NCT05148962). Primary endpoints of safety and tolerability were assessed. Most solicited local and systemic adverse events (AEs) following GRT-R910 dosing were mild to moderate and transient, and no treatment-related serious AEs were observed. The secondary endpoint of immunogenicity was assessed via IgG binding assays, neutralization assays, interferon-gamma ELISpot, and intracellular cytokine staining. Neutralizing antibody titers against ancestral Spike and variants of concern were boosted or induced by GRT-R910 and, contrasting to authorized vaccines, persisted through at least 6 months after the booster dose. GRT-R910 increased and/or broadened functional Spike-specific T cell responses and primed functional T cell responses to conserved non-Spike epitopes. This study is limited due to small sample size, and additional data from ongoing studies will be required to corroborate these interim findings.


Asunto(s)
COVID-19 , ARN Mensajero/genética , COVID-19/prevención & control , Humanos , Anciano , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Ensayos Clínicos como Asunto , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos T/inmunología
7.
Nat Med ; 28(8): 1619-1629, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35970920

RESUMEN

Checkpoint inhibitor (CPI) therapies provide limited benefit to patients with tumors of low immune reactivity. T cell-inducing vaccines hold promise to exert long-lasting disease control in combination with CPI therapy. Safety, tolerability and recommended phase 2 dose (RP2D) of an individualized, heterologous chimpanzee adenovirus (ChAd68) and self-amplifying mRNA (samRNA)-based neoantigen vaccine in combination with nivolumab and ipilimumab were assessed as primary endpoints in an ongoing phase 1/2 study in patients with advanced metastatic solid tumors (NCT03639714). The individualized vaccine regimen was safe and well tolerated, with no dose-limiting toxicities. Treatment-related adverse events (TRAEs) >10% included pyrexia, fatigue, musculoskeletal and injection site pain and diarrhea. Serious TRAEs included one count each of pyrexia, duodenitis, increased transaminases and hyperthyroidism. The RP2D was 1012 viral particles (VP) ChAd68 and 30 µg samRNA. Secondary endpoints included immunogenicity, feasibility of manufacturing and overall survival (OS). Vaccine manufacturing was feasible, with vaccination inducing long-lasting neoantigen-specific CD8 T cell responses. Several patients with microsatellite-stable colorectal cancer (MSS-CRC) had improved OS. Exploratory biomarker analyses showed decreased circulating tumor DNA (ctDNA) in patients with prolonged OS. Although small study size limits statistical and translational analyses, the increased OS observed in MSS-CRC warrants further exploration in larger randomized studies.


Asunto(s)
Neoplasias Colorrectales , Pan troglodytes , Adenoviridae/genética , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Fiebre , Humanos , ARN Mensajero/uso terapéutico
8.
Nat Biotechnol ; 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30556813

RESUMEN

Neoantigens, which are expressed on tumor cells, are one of the main targets of an effective antitumor T-cell response. Cancer immunotherapies to target neoantigens are of growing interest and are in early human trials, but methods to identify neoantigens either require invasive or difficult-to-obtain clinical specimens, require the screening of hundreds to thousands of synthetic peptides or tandem minigenes, or are only relevant to specific human leukocyte antigen (HLA) alleles. We apply deep learning to a large (N = 74 patients) HLA peptide and genomic dataset from various human tumors to create a computational model of antigen presentation for neoantigen prediction. We show that our model, named EDGE, increases the positive predictive value of HLA antigen prediction by up to ninefold. We apply EDGE to enable identification of neoantigens and neoantigen-reactive T cells using routine clinical specimens and small numbers of synthetic peptides for most common HLA alleles. EDGE could enable an improved ability to develop neoantigen-targeted immunotherapies for cancer patients.

9.
Nat Commun ; 5: 5641, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25472703

RESUMEN

Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single-cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to address a variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T-cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by ImageStream technology.


Asunto(s)
Citometría de Flujo/métodos , Hibridación Fluorescente in Situ/métodos , MicroARNs/análisis , ARN Mensajero/análisis , Linfocitos T/metabolismo , Citomegalovirus/inmunología , VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Interferón gamma/genética , Interleucina-2/genética , MicroARNs/genética , Linfocitos T/citología , Linfocitos T/inmunología , Regulación hacia Arriba
10.
J Vis Exp ; (80): e50821, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24193166

RESUMEN

T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , VIH-1/inmunología , Citocinas/biosíntesis , Epítopos de Linfocito T/inmunología , Citometría de Flujo , Infecciones por VIH/inmunología , Humanos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA