Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Inorg Chem ; 63(5): 2460-2469, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262043

RESUMEN

Ruthenium(II) complexes [Ru(tap)2(NN)]2+ (tap = 1,4,5,8-tetraazaphenanthrene, NN = 11-cyano-dipyrido[3,2-a:2',3'-c]phenazine (11-CN-dppz) and 11,12-dicyano-dipyrido[3,2-a:2',3'-c]phenazine (11,12-CN-dppz)) feature the C≡N groups as infrared (IR)-active redox markers. They were studied by cyclic voltammetry, UV-vis, and IR spectroelectrochemistry (SEC), and density functional theory calculations to assign the four 1e- reduction waves R1-R4 observed in dichloromethane. Generally, the NN ligands are reduced first (R1). For [Ru(tap)2(11,12-CN-dppz)]2+, R1 is sufficiently separated from R2 and delocalized over both tap ligands. Accordingly, IR SEC conducted at R1 shows a large red shift of the νs,as(C≡N) modes by -18/-28 cm-1, accompanied by a 4-fold enhancement of the νs(C≡N) intensity, comparably with reference data for free 11,12-CN-dppz. The first tap-based reduction of spin-doublet [Ru(tap)2(11,12-CN-dppz)]+ to spin-triplet [Ru(tap)2(11,12-CN-dppz)] at R2 decreased ν(C≡N) by merely -2 cm-1, while the intensity enhancement reached an overall factor of 8. Comparably, a red shift of ν(C≡N) by -27 cm-1 resulted from the 1e- reduction of [Ru(tap)2(11-CN-dppz)]2+ at R1 (poorly resolved from R2), and the intensity enhancement was roughly 3-fold. Concomitant 1e- reductions of the tap ligands (R2 and R3) caused only minor ν(C≡N) shifts of -3 cm-1 and increased the absorbance by overall factors of 6.5 and 8, respectively.

2.
Molecules ; 28(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241890

RESUMEN

Three novel rhenium N-heterocyclic carbene complexes, [Re]-NHC-1-3 ([Re] = fac-Re(CO)3Br), were synthesized and characterized using a range of spectroscopic techniques. Photophysical, electrochemical and spectroelectrochemical studies were carried out to probe the properties of these organometallic compounds. Re-NHC-1 and Re-NHC-2 bear a phenanthrene backbone on an imidazole (NHC) ring, coordinating to Re by both the carbene C and a pyridyl group attached to one of the imidazole nitrogen atoms. Re-NHC-2 differs from Re-NHC-1 by replacing N-H with an N-benzyl group as the second substituent on imidazole. The replacement of the phenanthrene backbone in Re-NHC-2 with the larger pyrene gives Re-NHC-3. The two-electron electrochemical reductions of Re-NHC-2 and Re-NHC-3 result in the formation of the five-coordinate anions that are capable of electrocatalytic CO2 reduction. These catalysts are formed first at the initial cathodic wave R1, and then, ultimately, via the reduction of Re-Re bound dimer intermediates at the second cathodic wave R2. All three Re-NHC-1-3 complexes are active photocatalysts for the transformation of CO2 to CO, with the most photostable complex, Re-NHC-3, being the most effective for this conversion. Re-NHC-1 and Re-NHC-2 afforded modest CO turnover numbers (TONs), following irradiation at 355 nm, but were inactive at the longer irradiation wavelength of 470 nm. In contrast, Re-NHC-3, when photoexcited at 470 nm, yielded the highest TON in this study, but remained inactive at 355 nm. The luminescence spectrum of Re-NHC-3 is red-shifted compared to those of Re-NHC-1 and Re-NHC-2, and previously reported similar [Re]-NHC complexes. This observation, together with TD-DFT calculations, suggests that the nature of the lowest-energy optical excitation for Re-NHC-3 has π→π*(NHC-pyrene) and dπ(Re)→π*(pyridine) (IL/MLCT) character. The stability and superior photocatalytic performance of Re-NHC-3 are attributed to the extended conjugation of the π-electron system, leading to the beneficial modulation of the strongly electron-donating tendency of the NHC group.

3.
Chemistry ; 27(17): 5509-5520, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33474741

RESUMEN

This work describes the synthesis and properties of a dicyanomethylene-substituted indolo[3,2-b]carbazole diradical ICz-CN. This quinoidal system dimerises almost completely to (ICz-CN)2 , which contains two long C(sp3 )-C(sp3 ) σ-bonds between the dicyanomethylene units. The minor open-shell ICz-CN component in the solid-state mixture was identified by EPR spectroscopy. Cyclic voltammetry and UV-visible spectroelectrochemical data, as well as comparison with reference monomer ICz-Br reveal that the nature of the one-electron oxidation of (ICz-CN)2 at ambient temperature and ICz-CN at elevated temperature is very similar in all these compounds due to the prevailing localization of their HOMO on the ICz backbone. The peculiar cathodic behaviour reflects the co-existence of (ICz-CN)2 and ICz-CN. The involvement of the dicyanomethylene groups stabilizes the close-lying LUMO and LUMO+1 of (ICz-CN)2 and especially ICz-CN compared to ICz-Br, resulting in a distinctive cathodic response at low overpotentials. Differently from neutral ICz-CN, its radical anion and dianion are remarkably stable under ambient conditions. The UV/Vis(-NIR) electronic transitions in parent (ICz-CN)2 and ICz-CN and their different redox forms have been assigned convincingly with the aid of TD-DFT calculations. The σ-bond in neutral (ICz-CN)2 is cleaved in solution and in the solid-state upon soft external stimuli (temperature, pressure), showing a strong chromism from light yellow to blue-green. Notably, in the solid state, the monomeric diradical species is predominantly formed under high hydrostatic pressure (>1 GPa).

4.
Inorg Chem ; 60(6): 3514-3523, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33645219

RESUMEN

Ruthenium(II) polypyridyl complexes [Ru(CN-Me-bpy)x(bpy)3-x]2+ (CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, and x = 1-3, abbreviated as 12+, 22+, and 32+) undergo four (12+) or five (22+ and 32+) successive one-electron reduction steps between -1.3 and -2.75 V versus ferrocenium/ferrocene (Fc+/Fc) in tetrahydrofuran. The CN-Me-bpy ligands are reduced first, with successive one-electron reductions in 22+ and 32+ being separated by 150-210 mV; reduction of the unsubstituted bpy ligand in 12+ and 22+ occurs only when all CN-Me-bpy ligands have been converted to their radical anions. Absorption spectra of the first three reduction products of each complex were measured across the UV, visible, near-IR (NIR), and mid-IR regions and interpreted with the help of density functional theory calculations. Reduction of the CN-Me-bpy ligand shifts the ν(C≡N) IR band by ca. -45 cm-1, enhances its intensity ∼35 times, and splits the symmetrical and antisymmetrical modes. Semireduced complexes containing two and three CN-derivatized ligands 2+, 3+, and 30 show distinct ν(C≡N) features due to the presence of both CN-Me-bpy and CN-Me-bpy•-, confirming that each reduction is localized on a single ligand. NIR spectra of 10, 1-, and 2- exhibit a prominent band attributable to the CN-Me-bpy•- moiety between 6000 and 7500 cm-1, whereas bpy•--based absorption occurs between 4500 and 6000 cm-1; complexes 2+, 3+, and 30 also exhibit a band at ca. 3300 cm-1 due to a CN-Me-bpy•- → CN-Me-bpy interligand charge-transfer transition. In the UV-vis region, the decrease of π → π* intraligand bands of the neutral ligands and the emergence of the corresponding bands of the radical anions are most diagnostic. The first reduction product of 12+ is spectroscopically similar to the lowest triplet metal-to-ligand charge-transfer excited state, which shows pronounced NIR absorption, and its ν(C≡N) IR band is shifted by -38 cm-1 and 5-7-fold-enhanced relative to the ground state.

5.
Chemistry ; 26(20): 4567-4575, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-31891433

RESUMEN

Four cyclometalated diiridium complexes, with IrCp*Cl (Cp*=η5 -C5 Me5 - ) termini bridged by 1,4- and 1,3-bis(p-tolyliminoethyl)benzene (1, 2), or 1,4- and 1,3-bis(2-pyridyl)benzene (3, 4), were prepared and characterized by nuclear magnetic resonance (NMR) spectroscopy and single-crystal X-ray diffraction (complexes 1, 2, and 4). The two iridium centers in complexes 1 and 3 are thus bound at the central benzene ring in the para-position (trans-Ir2), whereas those in complexes 2 and 4 are in the meta-position (cis-Ir2). Cyclic voltammograms of all four complexes show two consecutive one-electron oxidations. The potential difference between the two anodic steps in 1 and 3 is distinctly larger than that for 2 and 4. The visible-near-infrared (NIR)-short-wave infrared (SWIR) absorption spectra of trans-Ir2 monocations 1+ and 3+ are markedly different from those of cis-Ir2 monocations 2+ and 4+ . Notably, strong near-infrared electronic absorption appears only in the spectra of 1+ and 3+ whereas 2+ and 4+ absorb only weakly in the NIR-SWIR region. Combined DFT and TD-DFT calculations have revealed that (a) 1+ and 3+ (the diiridium-benzene trans-isomers) display the highest occupied spin-orbitals (HOSO) and the lowest unoccupied spin-orbital (LUSO) evenly delocalized over both molecule halves, and (b) their electronic absorptions in the NIR-SWIR region are attributed to mixed metal-to-ligand and ligand-to-ligand charge transfers (MLCT and LLCT). In contrast, cis-isomers 2+ and 4+ do not feature this stabilizing π-delocalization but a localized mixed-valence state showing a weak intervalence charge-transfer (IVCT) absorption in the SWIR region.

6.
Inorg Chem ; 59(8): 5564-5578, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32237729

RESUMEN

Herein, we present the cathodic paths of the Group-7 metal complex [Re(3,3'-DHBPY)(CO)3Cl] (3,3'-DHBPY = 3,3'-dihydroxy-2,2'-bipyridine) producing a moderately active catalyst of electrochemical reduction of CO2 to CO. The combined techniques of cyclic voltammetry and IR/UV-vis spectroelectrochemistry have revealed significant differences in the chemistry of the electrochemically reduced parent complex compared to the previously published Re/4,4'-DHBPY congener. The initial irreversible cathodic step in weakly coordinating THF is shifted toward much less negative electrode potentials, reflecting facile reductive deprotonation of one hydroxyl group and strong intramolecular hydrogen bonding, O-H···O-. The latter process occurs spontaneously in basic dimethylformamide where Re/4,4'-DHBPY remains stable. The subsequent reduction of singly deprotonated [Re(3,3'-DHBPY-H+)(CO)3Cl]- under ambient conditions occurs at a cathodic potential close to that of the Re/4,4'-DHBPY-H+ derivative. However, for the stabilized 3,3'-DHBPY-H+ ligand, the latter process at the second cathodic wave is more complex and involves an overall transfer of three electrons. Rapid potential step electrolysis induces 1e--reductive cleavage of the second O-H bond, triggering dissociation of the Cl- ligand from [Re(3,3'-DHBPY-2H+)(CO)3Cl]2-. The ultimate product of the second cathodic step in THF was identified as 5-coordinate [Re(3,3'-DHBPY-2H+)(CO)3]3-, the equivalent of classical 2e--reduced [Re(BPY)(CO)3]-. Each reductive deprotonation of the DHBPY ligand results in a redshift of the IR ν(CO) absorption of the tricarbonyl complexes by ca. 10 cm-1, facilitating the product assignment based on comparison with the literature data for corresponding Re/BPY complexes. The Cl- dissociation from [Re(3,3'-DHBPY-2H+)(CO)3Cl]2- was proven in strongly coordinating butyronitrile. The latter dianion is stable at 223 K, converting at 258 K to 6-coordinate [Re(3,3'-DHBPY-2H+)(CO)3(PrCN)]3-. Useful reference data were obtained with substituted parent [Re(3,3'-DHBPY)(CO)3(PrCN)]+ that also smoothly deprotonates by the initial reduction to [Re(3,3'-DHBPY-H+)(CO)3(PrCN)]. The latter complex ultimately converts at the second cathodic wave to [Re(3,3'-DHBPY-2H+)(CO)3(PrCN)]3- via a counterintuitive ETC step generating the 1e- radical of the parent complex, viz., [Re(3,3'-DHBPY)(CO)3(PrCN)]. The same alternative reduction path is also followed by [Re(3,3'-DHBPY-H+)(CO)3Cl]- at the onset of the second cathodic wave, where the ETC step results in the intermediate [Re(3,3'-DHBPY)(CO)3Cl]•- further reducible to [Re(3,3'-DHBPY-2H+)(CO)3]3- as the CO2 catalyst.

7.
Inorg Chem ; 58(1): 663-671, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30540448

RESUMEN

[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene; dppz = dipyrido[3,2- a:2',3'- c]phenazine) is known to photo-oxidize guanine in DNA. Whether this oxidation proceeds by direct photoelectron transfer or by proton-coupled electron transfer is still unknown. To help distinguish between these mechanisms, spectro-electrochemical experiments have been carried out with [Ru(TAP)2(dppz)]2+ in acetonitrile. The UV-vis and mid-IR spectra obtained for the one-electron reduced product were compared to those obtained by picosecond transient absorption and time-resolved infrared experiments of [Ru(TAP)2(dppz)]2+ bound to guanine-containing DNA. An interesting feature of the singly reduced species is an electronic transition in the near-IR region (with λmax at 1970 and 2820 nm). Density functional and time-dependent density functional theory simulations of the vibrational and electronic spectra of [Ru(TAP)2(dppz)]2+, the reduced complex [Ru(TAP)2(dppz)]+, and four isomers of [Ru(TAP)(TAPH)(dppz)]2+ (a possible product of proton-coupled electron transfer) were performed. Significantly, these predict absorption bands at λ > 1900 nm (attributed to a ligand-to-metal charge-transfer transition) for [Ru(TAP)2(dppz)]+ but not for [Ru(TAP)(TAPH)(dppz)]2+. Both the UV-vis and mid-IR difference absorption spectra of the electrochemically generated singly reduced species [Ru(TAP)2(dppz)]+ agree well with the transient absorption and time-resolved infrared spectra previously determined for the transient species formed by photoexcitation of [Ru(TAP)2(dppz)]2+ intercalated in guanine-containing DNA. This suggests that the photochemical process in DNA proceeds by photoelectron transfer and not by a proton-coupled electron transfer process involving formation of [Ru(TAP)(TAPH)(dppz)]2+, as is proposed for the reaction with 5'-guanosine monophosphate. Additional infrared spectro-electrochemical measurements and density functional calculations have also been carried out on the free TAP ligand. These show that the TAP radical anion in acetonitrile also exhibits strong broad near-IR electronic absorption (λmax at 1750 and 2360 nm).


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Oligonucleótidos/química , Complejos de Coordinación/efectos de la radiación , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Sustancias Intercalantes/efectos de la radiación , Ligandos , Luz , Modelos Químicos , Oxidación-Reducción , Fenantrenos/química , Fenazinas/química , Rutenio/química
8.
Chemistry ; 24(71): 18998-19009, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30277605

RESUMEN

Diarylamine-substituted osmanaphthalyne complexes that feature two redox centers linked by the rigid skeleton of the metallacycle (C^C+ ), specifically, [OsCl2 (PPh3 )2 {(C^C+ )NAr2 }][BF4 - ] (Ar=Ph (1 a), p-MeOPh (1 b)) and their open-ring precursors [OsHCl2 (PPh3 )2 {(≡C-C(PPh3 + )=CHPh)NR2 }][BF4 - ] (Ar=Ph (2 a), p-MeOPh (2 b)), were successfully synthesized and characterized by 1 H, 13 C, and 31 P NMR spectroscopy, ESI-MS, and elemental analysis. The solid-state molecular structures of complexes 1 a and 2 a were ascertained by single-crystal X-ray diffraction. The Os≡C bond length in both complexes 1 a and 2 a fell within the range reported for similar osmanaphthalynes and osmium carbyne complexes, respectively. The structural parameters determined for complex 1 a, which were successfully reproduced by theoretical calculations, point to a π-delocalized metallacycle structure. The purple color of compounds 1 a and b was explained by the diarylamine→Os(metallacycle) charge-transfer absorption in the visible region. The neutral, one-electron-oxidized and one-electron-reduced states of compounds 1 a, b, and a reference complex that lacked the diarylamine substituent, [OsCl2 (PPh3 )2 {(C^C+ )}][BF4 - ] (1'), were investigated by cyclic and square-wave voltammetry, UV/Vis/NIR spectroelectrochemistry, and DFT calculations. The spin density in singly oxidized complexes [1 a]+ and [1 b]+ predominantly resided on the aminyl segment, with osmium involvement controlled by the diphenylamine substitution. Spin density in stable, singly-reduced [1']- was distributed mainly over the osmanaphthalyne metallacycle.

9.
Inorg Chem ; 57(18): 11704-11716, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30188701

RESUMEN

Density functional theory (DFT) calculations were performed on clusters [Os3(CO)10(α-diimine)], for α-diimine = 2,2'-bipyridine (BPY), N-isopropyl 2-iminomethylpyridine (IMP), and N, N'-diisopropyl-l,4-diaza-1,3-butadiene (DAB), together with their spectroscopic study. This important family of clusters is known to convert upon irradiation with visible light into short-lived biradicals and long-lived zwitterions from a σπ* (SBLCT) excited state that has not been described accurately thus far by quantum mechanical calculations. On the basis of the combined DFT, UV-vis absorption, and resonance Raman data, the lowest-lying visible absorption band is assigned to a σ(Os1-Os3)-to-π*(α-diimine) CT transition, for α-diimine = bpy and IMP, and to a strongly delocalized σ(Os1-Os3)π*-to-σ*(Os1-Os3)π* transition for conjugated nonaromatic α-diimine = DAB. The DFT calculations rationalize the experimentally determined characteristics of this electronic transition in the studied series: (i) The corresponding absorption band is the dominant feature in the visible spectral region. (ii) The CT character of the electronic excitation declines from α-diimine = bpy to IMP and vanishes for DAB. (iii) The excitation energies decrease in the order α-diimine = DAB > BPY > IMP. (iv) The oscillator strength shrinks in the order α-diimine = DAB > IMP > BPY. Reference photoreaction quantum yields measured accurately for the formation of a cluster zwitterion from [Os3(CO)10(IMP)] in strongly coordinating pyridine demonstrate that the optical population of the lowest-energy 1σπ* and relaxed 3σπ* excited states in the DFT model scheme is still capable of inducing the initial homolytic Os1-Os3 σ-bond splitting, although less efficiently than the optical excitation into neighbor higher-lying electronic transitions due to a higher potential barrier for the reaction from a dissociative (σσ*) state.

10.
Inorg Chem ; 57(15): 9039-9047, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30027738

RESUMEN

The diarylethene moiety is one of the most extensively used switches in the field of molecular electronics. Here we report on spectroscopic and quantum chemical studies of two diarylethene-based compounds with a non- C3-symmetric triethynyl terthiophene core symmetrically substituted with RuCp*(dppe) or trimethylsilyl termini. The ethynyl linkers are strong IR markers that we use in time-resolved vibrational spectroscopic studies to get insight into the character and dynamics of the electronically excited states of these compounds on the picosecond to nanosecond time scale. In combination with electronic transient absorption studies and DFT calculations, our studies show that the conjugation of the non- C3-symmetric triethynyl terthiophene system in the excited state strongly affects one of the thiophene rings involved in the ring closure. As a result, cyclization of the otherwise photochromic 3,3″-dimethyl-2,2':3',2″-terthiophene core is inhibited. Instead, the photoexcited compounds undergo intersystem crossing to a long-lived triplet excited state from which they convert back to the ground state.

11.
Org Biomol Chem ; 16(27): 5006-5015, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29946600

RESUMEN

A macrocyclic receptor molecule containing two viologen species connected by conjugated terphenyl groups has been designed and synthesised. The single-crystal X-ray structure shows that the two viologen residues have a transannular NN separation of ca. 7.4 Å. Thus, the internal cavity dimensions are suitable for the inclusion of π-electron-rich species. The macrocycle is redox active, and can accept electrons from suitable donor species including triethylamine, resulting in a dramatic colour change from pale yellow to dark green as a consequence of the formation of a paramagnetic bis(radical cationic) species. Cyclic voltammetry shows that the macrocycle can undergo two sequential and reversible reduction processes (E1/2 = -0.65 and -0.97 V vs. Fc/Fc+). DFT and TD-DFT studies accurately replicate the structure of the tetracationic macrocycle and the electronic absorption spectra of the three major redox states of the system. These calculations also showed that during electrochemical reduction, the unpaired electron density of the radical cations remained relatively localised within the heterocyclic rings. The ability of the macrocycle to form supramolecular complexes was confirmed by the formation of a pseudorotaxane with a guest molecule containing a π-electron-rich 1,5-dihydroxynaphthalene derivative. Threading and dethreading of the pseudorotaxane was fast on the NMR timescale, and the complex exhibited an association constant of 150 M-1 (±30 M-1) as calculated from 1H NMR titration studies.

12.
Chemistry ; 23(55): 13776-13783, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28749543

RESUMEN

This work reports on a quinodimethane-type molecule, 2,7-dicyanomethylene-9-(2-ethylhexyl)carbazole (1), one of the shortest π-conjugated biradicaloids reported to be stable in solution under ambient conditions. This carbazole-based quinoidal precursor is able to form a macrocyclic σ-bonded tetramer (2). The resolved single-crystal X-ray structure of tetramer 2 shows that four molecules of 1 are linked together through four long (CN)2 C-C(CN)2 bonds (1.631 Å) resulting from coupling of the unpaired electrons in biradicaloid 1. Dynamic interconversion between monomer 1 and cyclophane tetramer 2 is achieved by reversible cleavage and recovery of the four (CN)2 C-C(CN)2 bonds upon soft external stimuli (light absorption, temperature and pressure), which is accompanied by significant color changes. These novel photo-, thermo-, and mechanochromic properties expand the versatility of π-conjugated biradicaloid compounds as novel functional materials that, in combination with spin chemistry and dynamic covalent chemistry, can be relevant in molecular machines, sensors, and switches.

13.
Inorg Chem ; 56(18): 11074-11086, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28849928

RESUMEN

A series of five diruthenium diethynyl complexes based on α,ß-fused oligothienoacenes in the core of the bridging ligands [{Ru(dppe)Cp*}2(µ-C≡C-L-C≡C)] [dppe = 1,2-bis(diphenylphosphino)ethane, Cp* = η5-C5Me5; L = thieno[3,2-b]thiophene (4), thieno[2,3-b]thiophene (5), 3,4-dimethylthieno[2,3-b]thiophene (6), dithieno[3,2-b:2',3'-d]thiophene (7), and thieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thiophene (8)] have been synthesized and fully characterized electrochemically and spectroscopically. Elongation of the redox noninnocent oligothienoacene bridge core causes a smaller potential difference between the initial two anodic steps, not seen for free dialkyl oligothienoacenes, and increased positive charge delocalization over the conjugated bridge backbone. The highest occupied molecular orbital of the parent complexes resides predominantly on the oligothienoacene core, with strong participation of the ethynyl linkers and slightly smaller contribution from the metallic termini. This bonding character makes the initial one-electron oxidation symmetrical, as revealed by combined voltammetric and spectroscopic (IR, UV-vis-near-IR, and electron paramagnetic resonance) methods as well as density functional theory (DFT) and time-dependent DFT calculations of truncated and selected nontruncated models of the studied series. The remarkable gradual appearance of two C≡C stretching absorptions in the IR spectra of the monocationic diethynyl complexes is ascribed to increasing vibronic coupling of the IR-forbidden νs(C≡C) mode of the oxidized -[C≡C-core-C≡C]+- bridge with a low-lying π-π*(intrabridge)/metal-to-ligand charge-transfer electronic transition in the near-to-mid-IR spectral region.

14.
Inorg Chem ; 56(23): 14426-14437, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29144747

RESUMEN

A series of complexes [Et4N][Ln(NCS)4(H2O)4] (Ln = Pr, Tb, Dy, Ho, Yb) have been structurally characterized, all showing the same structure, namely a distorted square antiprismatic coordination geometry, and the Ln-O and Ln-N bond lengths following the expected lanthanide contraction. When the counterion is Cs+, a different structural motif is observed and the eight-coordinate complex Cs5[Nd(NCS)8] isolated. The thorium compounds [Me4N]4[Th(NCS)7(NO3)] and [Me4N]4[Th(NCS)6(NO3)2] have been characterized, and high coordination numbers are also observed. Finally, attempts to synthesize a U(III) thiocyanate compound has been unsuccessful; from the reaction mixture, a heterocycle formed by condensation of five MeCN solvent molecules, possibly promoted by U(III), was isolated and structurally characterized. To rationalize the inability to isolate U(III) thiocyanate compounds, thin-layer cyclic voltammetry and IR spectroelectrochemistry have been utilized to explore the cathodic behavior of [Et4N]4[U(NCS)8] and [Et4N][U(NCS)5(bipy)2] along with a related uranyl compound [Et4N]3[UO2(NCS)5]. In all examples, the reduction triggers a rapid dissociation of [NCS]- ions and decomposition. Interestingly, the oxidation chemistry of [Et4N]3[UO2(NCS)5] in the presence of bipy gives the U(IV) compound [Et4N]4[U(NCS)8], an unusual example of a ligand-based oxidation triggering a metal-based reduction. The experimental results have been augmented by a computational investigation, concluding that the U(III)-NCS bond is more ionic than the U(IV)-NCS bond.

15.
Inorg Chem ; 56(2): 1001-1015, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28045545

RESUMEN

Homo-dinuclear nonlinear complexes [{M(dppe)Cp*}2{µ-(-C≡C)2X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η5-C5Me5; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1H, 13C, and 31P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a]+ with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.

16.
Chemistry ; 22(39): 13965-13975, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27531163

RESUMEN

The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin-Day Class II mixed-valence within the redox-active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one-electron oxidation allowed for isolation of the corresponding cationic ligand-based diradical species. SQUID (super-conducting quantum interference device) measurements of these compounds revealed weak anti-ferromagnetic spin coupling between the two ligand-centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox-active ligand framework thus allows for efficient electronic communication between the two binding pockets.

17.
Inorg Chem ; 55(24): 12568-12582, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989199

RESUMEN

Manganese tricarbonyl bromide complexes incorporating IP (2-(phenylimino)pyridine) derivatives, [MnBr(CO)3(IP)], are demonstrated as a new group of catalysts for CO2 reduction, which represent the first example of utilization of (phenylimino)pyridine ligands on manganese centers for this purpose. The key feature is the asymmetric structure of the redox-noninnocent ligand that permits independent tuning of its steric and electronic properties. The α-diimine ligands and five new Mn(I) compounds have been synthesized, isolated in high yields, and fully characterized, including X-ray crystallography. Their electrochemical and electrocatalytic behavior was investigated using cyclic voltammetry and UV-vis-IR spectroelectrochemistry within an OTTLE cell. Mechanistic investigations under an inert atmosphere have revealed differences in the nature of the reduction products as a function of steric bulk of the ligand. The direct ECE (electrochemical-chemical-electrochemical) formation of a five-coordinate anion [Mn(CO)3(IP)]-, a product of two-electron reduction of the parent complex, is observed in the case of the bulky DIPIMP (2-[((2,6-diisopropylphenyl)imino)methyl]pyridine), TBIMP (2-[((2-tert-butylphenyl)imino)methyl]pyridine), and TBIEP (2-[((2-tert-butylphenyl)imino)ethyl]pyridine) derivatives. This process is replaced for the least sterically demanding IP ligand in [MnBr(CO)3(IMP)] (2-[(phenylimino)methyl]pyridine) by the stepwise formation of such a monoanion via an ECEC(E) mechanism involving also the intermediate Mn-Mn dimer [Mn(CO)3(IMP)]2. The complex [MnBr(CO)3(IPIMP)] (2-[((2-diisopropylphenyl)imino)methyl]pyridine), which carries a moderately electron donating, moderately bulky IP ligand, shows an intermediate behavior where both the five-coordinate anion and its dimeric precursor are jointly detected on the time scale of the spectroelectrochemical experiments. Under an atmosphere of CO2 the studied complexes, except for the DIPIMP derivative, rapidly coordinate CO2, forming stable bicarbonate intermediates, with no dimer being observed. Such behavior indicates that the CO2 binding is outcompeting another pathway: viz., the dimerization reaction between the five-coordinate anion and the neutral parent complex. The bicarbonate intermediate species undergo reduction at more negative potentials (ca. -2.2 V vs Fc/Fc+), recovering [Mn(CO)3(IP)]- and triggering the catalytic production of CO.

18.
Inorg Chem ; 55(6): 2691-700, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26909823

RESUMEN

The single molecule conductances of a series of bis-2,2':6',2″-terpyridine complexes featuring Ru(II), Fe(II), and Co(II) metal ions and trimethylsilylethynyl (Me3SiC≡C-) or thiomethyl (MeS-) surface contact groups have been determined. In the absence of electrochemical gating, these complexes behave as tunneling barriers, with conductance properties determined more by the strength of the electrode-molecule contact and the structure of the "linker" than the nature of the metal-ion or redox properties of the complex.

19.
Org Biomol Chem ; 14(3): 980-8, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26626110

RESUMEN

The cyclocondensation reaction between rigid, electron-rich aromatic diamines and 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium (Zincke) salts has been harnessed to produce a series of conjugated oligomers containing up to twelve aromatic/heterocyclic residues. These oligomers exhibit discrete, multiple redox processes accompanied by dramatic changes in electronic absorption spectra.

20.
J Am Chem Soc ; 137(45): 14319-28, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26488257

RESUMEN

Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA