Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 163(4): 934-46, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544940

RESUMEN

Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to 10-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes.


Asunto(s)
Drosophila melanogaster/genética , Cromosomas Politénicos/química , Animales , Núcleo Celular/química , Núcleo Celular/genética , Puffs Cromosómicos , Diploidia , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Técnicas Genéticas , Larva/química
2.
Methods ; 68(1): 199-206, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556557

RESUMEN

Hedgehog (Hh) signal transduction is necessary for the development of most mammalian tissues and can go awry and cause birth defects or cancer. Hh signaling was initially described in Drosophila, and much of what we know today about mammalian Hh signaling was directly guided by discoveries in the fly. Indeed, Hh signaling is a wonderful example of the use of non-vertebrate model organisms to make basic discoveries that lead to new disease treatment. The first pharmaceutical to treat hyperactive Hh signaling in Basal Cell Carcinoma was released in 2012, approximately 30 years after the isolation of Hh mutants in Drosophila. The study of Hh signaling has been greatly facilitated by the imaginal wing disc, a tissue with terrific experimental advantages. Studies using the wing disc have led to an understanding of Hh ligand processing, packaging into particles for transmission, secretion, reception, signal transduction, target gene activation, and tissue patterning. Here we describe the imaginal wing disc, how Hh patterns this tissue, and provide methods to use wing discs to study Hh signaling in Drosophila. The tools and approaches we highlight form the cornerstone of research efforts in many laboratories that use Drosophila to study Hh signaling, and are essential for ongoing discoveries.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Hedgehog/genética , Transducción de Señal , Animales , Biología Molecular/métodos , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
3.
PLoS Genet ; 8(8): e1002873, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956908

RESUMEN

The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Complejos Multiproteicos/genética , Cromosomas Politénicos/genética , Animales , Compartimento Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrómero/genética , Interfase/genética , Mitosis , Cromosomas Politénicos/metabolismo
4.
PLoS Genet ; 4(10): e1000228, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18927632

RESUMEN

Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we demonstrate that two predicted condensin II subunits, Cap-H2 and Cap-D3, are required to promote territory formation. In mutants of either subunit, territory formation fails and chromatin is dispersed throughout the nucleus. Anaphase I is also abnormal in Cap-H2 mutants as chromatin bridges are found between segregating heterologous and homologous chromosomes. Aneuploid sperm may be generated from these defects as they occur at an elevated frequency and are genotypically consistent with anaphase I segregation defects. We propose that condensin II-mediated prophase I territory formation prevents and/or resolves heterologous chromosomal associations to alleviate their potential interference in anaphase I segregation. Furthermore, condensin II-catalyzed prophase I chromosome condensation may be necessary to resolve associations between paired homologous chromosomes of each bivalent. These persistent chromosome associations likely consist of DNA entanglements, but may be more specific as anaphase I bridging was rescued by mutations in the homolog conjunction factor teflon. We propose that the consequence of condensin II mutations is a failure to resolve heterologous and homologous associations mediated by entangled DNA and/or homolog conjunction factors. Furthermore, persistence of homologous and heterologous interchromosomal associations lead to anaphase I chromatin bridging and the generation of aneuploid gametes.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Meiosis/genética , Meiosis/fisiología , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Alelos , Anafase/genética , Anafase/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Drosophila melanogaster/citología , Femenino , Fertilidad/genética , Fertilidad/fisiología , Genes de Insecto , Masculino , Modelos Biológicos , Complejos Multiproteicos/química , Mutación , No Disyunción Genética , Profase , Subunidades de Proteína , Cromosomas Sexuales
5.
Sci Signal ; 11(547)2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206138

RESUMEN

A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Transducción de Señal , Anilidas/farmacología , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Humanos , Estimación de Kaplan-Meier , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Células 3T3 NIH , Naftiridinas/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Fenazinas , Fosfoproteínas/genética , Piridinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Genetics ; 194(1): 101-15, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436180

RESUMEN

Nucleostemin 3 (NS3) is an evolutionarily conserved protein with profound roles in cell growth and viability. Here we analyze cell-autonomous and non-cell-autonomous growth control roles of NS3 in Drosophila and demonstrate its GTPase activity using genetic and biochemical assays. Two null alleles of ns3, and RNAi, demonstrate the necessity of NS3 for cell autonomous growth. A hypomorphic allele highlights the hypersensitivity of neurons to lowered NS3 function. We propose that NS3 is the functional ortholog of yeast and human Lsg1, which promotes release of the nuclear export adapter from the large ribosomal subunit. Release of the adapter and its recycling to the nucleus are essential for sustained production of ribosomes. The ribosome biogenesis role of NS3 is essential for proper rates of translation in all tissues and is necessary for functions of growth-promoting neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP/metabolismo , Ribosomas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Dopamina/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/citología , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/química , Sitios Genéticos/genética , Humanos , Larva/citología , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
7.
Genetics ; 195(1): 127-46, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821596

RESUMEN

Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood. To better understand how Drosophila melanogaster condensin is regulated, we performed a yeast two-hybrid screen and identified the chromo-barrel domain protein Mrg15 to interact with the Cap-H2 condensin subunit. Genetic interactions demonstrate that Mrg15 function is required for Cap-H2-mediated unpairing of polytene chromosomes in ovarian nurse cells and salivary gland cells. In diploid tissues, transvection assays demonstrate that Mrg15 inhibits transvection at Ubx and cooperates with Cap-H2 to antagonize transvection at yellow. In cultured cells, we show that levels of chromatin-bound Cap-H2 protein are partially dependent on Mrg15 and that Cap-H2-mediated homolog unpairing is suppressed by RNA interference depletion of Mrg15. Thus, maintenance of interphase chromosome compaction and homolog pairing status requires both Mrg15 and Cap-H2. We propose a model where the Mrg15 and Cap-H2 protein-protein interaction may serve to recruit Cap-H2 to chromatin and facilitates compaction of interphase chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complejos Multiproteicos/metabolismo , Cromosomas Politénicos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Epigénesis Genética , Proteínas de Homeodominio/genética , Interfase , Complejos Multiproteicos/genética , Cromosomas Politénicos/química , Unión Proteica , Factores de Transcripción/genética
8.
Science ; 322(5906): 1384-7, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19039137

RESUMEN

Polytene chromosome structure is a characteristic of some polyploid cells where several to thousands of chromatids are closely associated with perfect alignment of homologous DNA sequences. Here, we show that Drosophila condensin II promotes disassembly of polytene structure into chromosomal components. Condensin II also negatively regulates transvection, a process whereby certain alleles are influenced transcriptionally via interallelic physical associations. We propose that condensin II restricts trans-chromosomal interactions that affect transcription through its ability to spatially separate aligned interphase chromosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Alelos , Animales , Ciclo Celular , Cromosomas/genética , Cromosomas/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Interfase , Larva/genética , Complejos Multiproteicos/genética , Proteínas Mutantes/metabolismo , Pigmentación/genética , Glándulas Salivales , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA