Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 252, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950228

RESUMEN

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Asunto(s)
Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efectos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Neuronas Dopaminérgicas/fisiología , Adenosina Trifosfato/metabolismo , Azúcares/efectos adversos , Azúcares/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Glucosa/metabolismo , Modelos Animales de Enfermedad
2.
Nucleic Acids Res ; 49(4): 2065-2084, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33555350

RESUMEN

We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.


Asunto(s)
Replicación del ADN , ADN/química , ADN/metabolismo , G-Cuádruplex , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Línea Celular , ADN Polimerasa Dirigida por ADN/metabolismo , Genes myc , Humanos , Modelos Moleculares , Mutación , Motivos de Nucleótidos , Nucleotidiltransferasas/genética , Unión Proteica
3.
Proc Natl Acad Sci U S A ; 116(47): 23829-23839, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685639

RESUMEN

Regular physical exercise is the most efficient and accessible intervention known to promote healthy aging in humans. The molecular and cellular mechanisms that mediate system-wide exercise benefits, however, remain poorly understood, especially as applies to tissues that do not participate directly in training activity. The establishment of exercise protocols for short-lived genetic models will be critical for deciphering fundamental mechanisms of transtissue exercise benefits to healthy aging. Here we document optimization of a long-term swim exercise protocol for Caenorhabditis elegans and we demonstrate its benefits to diverse aging tissues, even if exercise occurs only during a restricted phase of adulthood. We found that multiple daily swim sessions are essential for exercise adaptation, leading to body wall muscle improvements in structural gene expression, locomotory performance, and mitochondrial morphology. Swim exercise training enhances whole-animal health parameters, such as mitochondrial respiration and midlife survival, increases functional healthspan of the pharynx and intestine, and enhances nervous system health by increasing learning ability and protecting against neurodegeneration in models of tauopathy, Alzheimer's disease, and Huntington's disease. Remarkably, swim training only during early adulthood induces long-lasting systemic benefits that in several cases are still detectable well into midlife. Our data reveal the broad impact of swim exercise in promoting extended healthspan of multiple C. elegans tissues, underscore the potency of early exercise experience to influence long-term health, and establish the foundation for exploiting the powerful advantages of this genetic model for the dissection of the exercise-dependent molecular circuitry that confers system-wide health benefits to aging adults.


Asunto(s)
Caenorhabditis elegans/fisiología , Aprendizaje , Neuroprotección , Natación , Adaptación Fisiológica , Animales , Intestinos/fisiología , Músculos/fisiología , Fenómenos Fisiológicos del Sistema Nervioso
4.
Drug Metab Rev ; 53(2): 207-233, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989099

RESUMEN

Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.

5.
J Toxicol Environ Health B Crit Rev ; 24(2): 51-94, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33616007

RESUMEN

Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.


Asunto(s)
Caenorhabditis elegans/metabolismo , Preparaciones Farmacéuticas/metabolismo , Xenobióticos/metabolismo , Animales , Transporte Biológico/fisiología , Ecotoxicología/métodos , Humanos , Modelos Animales , Especificidad de la Especie , Toxicología/métodos
6.
Drug Metab Rev ; 52(3): 395-407, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32456484

RESUMEN

The 12th International Society for the Study of Xenobiotics (ISSX) meeting, held in Portland, OR, USA from July 28 to 31, 2019, was attended by diverse members of the pharmaceutical sciences community. The ISSX New Investigators Group provides learning and professional growth opportunities for student and early career members of ISSX. To share meeting content with those who were unable to attend, the ISSX New Investigators herein elected to highlight the "Advances in the Study of Drug Metabolism" symposium, as it engaged attendees with diverse backgrounds. This session covered a wide range of current topics in drug metabolism research including predicting sites and routes of metabolism, metabolite identification, ligand docking, and medicinal and natural products chemistry, and highlighted approaches complemented by computational modeling. In silico tools have been increasingly applied in both academic and industrial settings, alongside traditional and evolving in vitro techniques, to strengthen and streamline pharmaceutical research. Approaches such as quantum mechanics simulations facilitate understanding of reaction energetics toward prediction of routes and sites of drug metabolism. Furthermore, in tandem with crystallographic and orthogonal wet lab techniques for structural validation of drug metabolizing enzymes, in silico models can aid understanding of substrate recognition by particular enzymes, identify metabolic soft spots and predict toxic metabolites for improved molecular design. Of note, integration of chemical synthesis and biosynthesis using natural products remains an important approach for identifying new chemical scaffolds in drug discovery. These subjects, compiled by the symposium organizers, presenters, and the ISSX New Investigators Group, are discussed in this review.


Asunto(s)
Biología Computacional , Descubrimiento de Drogas , Xenobióticos , Congresos como Asunto , Aprendizaje Automático , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Teoría Cuántica
7.
Chem Res Toxicol ; 33(6): 1428-1441, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32129605

RESUMEN

Isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs, respectively) are plasticizers and flame retardants that are ubiquitous in indoor environments; however, no studies to date have characterized their metabolism. Using human liver subcellular S9 fractions, phase I and II in vitro metabolism of triphenyl phosphate (TPHP), 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) was investigated at 1 and 10 µM doses. Parent depletion and the formation of known or suspected metabolites (e.g., likely hydrolysis or hydroxylated products), including diphenyl phosphate (DPHP), hydroxyl-triphenyl phosphate (OH-TPHP), isopropylphenyl phenyl phosphate (ip-PPP), and tert-butylphenyl phenyl phosphate (tb-PPP), were monitored and quantified via GC/MS or LC-MS/MS. tb-PPP and its conjugates were identified as the major in vitro metabolites of 4tBPDPP and accounted for 71% and 49%, respectively, of the parent molecule that was metabolized during the incubation. While the mass balance between parents and metabolites was conserved for TPHP and 4tBPDPP, approximately 20% of the initial parent mass was unaccounted for after quantifying suspected metabolites of 2IPPDPP and 4IPPDPP that had authentic standards available. Two novel ITP metabolites, mono-isopropenylphenyl diphenyl phosphate and hydroxy-isopropylphenyl diphenyl phosphate, were tentatively identified by high-resolution mass spectrometry and screened for in recently collected human urine where mono-isopropenylphenyl diphenyl phosphate was detected in one of nine samples analyzed. This study provides insight into the biological fate of ITP and TBPP isomers in human tissues and is useful in identifying appropriate biomarkers of exposure to monitor, particularly in support of epidemiological studies.


Asunto(s)
Contaminantes Ambientales/metabolismo , Ésteres/metabolismo , Retardadores de Llama/metabolismo , Hígado/metabolismo , Organofosfatos/metabolismo , Plastificantes/metabolismo , Fracciones Subcelulares/metabolismo , Biotransformación , Niño , Preescolar , Contaminantes Ambientales/orina , Ésteres/orina , Humanos , Organofosfatos/orina
8.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261893

RESUMEN

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Dinámicas Mitocondriales , Enfermedad de Parkinson/genética , Tolerancia a Radiación/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de la radiación , Dinaminas/genética , GTP Fosfohidrolasas/genética , Mitofagia , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta/efectos adversos
9.
Chem Res Toxicol ; 29(1): 101-8, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26651356

RESUMEN

Overexpression of the translesion synthesis polymerase hpol κ in glioblastomas has been linked to poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating AhR in glioblastoma, led to a decrease in the endogenous AhR agonist kynurenine and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling, and the resulting overexpression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that upregulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors.


Asunto(s)
ADN Polimerasa Dirigida por ADN/biosíntesis , Inestabilidad Genómica/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Quinurenina/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glioblastoma/genética , Humanos , Indoles/química , Indoles/farmacología , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
Arch Biochem Biophys ; 564: 244-53, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25447818

RESUMEN

The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin.


Asunto(s)
Anticoagulantes , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/enzimología , Warfarina , Anticoagulantes/química , Anticoagulantes/farmacocinética , Anticoagulantes/farmacología , Humanos , Cinética , Warfarina/química , Warfarina/farmacocinética , Warfarina/farmacología
11.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260421

RESUMEN

The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons but also functions in several other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants have increased ER stress, dopaminergic neurodegeneration, protein aggregation, slower growth, and a reduced lifespan. The multiple requirements of MANF in different systems suggest its essential role in regulating cellular processes. However, how intracellular and extracellular MANF regulates broader cellular function remains unknown. Here, we report a novel mechanism of action for manf-1 that involves the autophagy transcription factor HLH-30/TFEB-mediated signaling to regulate lysosomal function and aging. We generated multiple transgenic strains overexpressing MANF-1 and found that animals had extended lifespan, reduced protein aggregation, and improved neuronal health. Using a fluorescently tagged MANF-1, we observed different tissue localization of MANF-1 depending on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes. These findings were consistent with our transcriptomic studies and, together with analysis of autophagy regulators, demonstrate that MANF-1 regulates protein homeostasis through increased autophagy and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of the stress response, proteostasis, and aging.

12.
Arch Biochem Biophys ; 537(1): 12-20, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23811196

RESUMEN

CYP2E1 plays a critical role in detoxification and carcinogenic activation of drugs, pollutants, and dietary compounds; however, these metabolic processes can involve poorly characterized cooperative interactions that compromise the ability to understand and predict CYP2E1 metabolism. Herein, we employed an array of ten azoles with an emphasis on pyrazoles to establish the selectivity of catalytic and cooperative CYP2E1 sites through binding and catalytic studies. Spectral binding studies for monocyclic azoles suggested two binding events, while bicyclic azoles suggested one. Pyrazole had moderate affinity toward the CYP2E1 catalytic site that improved when a methyl group was introduced at either position 3 or 4. The presence of methyl groups simultaneously at positions 3 and 5 blocked binding, and a phenyl group at position 3 did not improve binding affinity. In contrast, pyrazole fusion to a benzene or cyclohexane ring greatly increased affinity. The consequences of these binding events on CYP2E1 catalysis were studied through inhibition studies with 4-nitrophenol, a substrate known to bind both sites. Most pyrazoles shared a common mixed cooperative inhibition mechanism in which pyrazole binding rescued CYP2E1 from substrate inhibition. Overall, inhibitor affinities toward the CYP2E1 catalytic site were similar to those reported in binding studies, and the same trend was observed for binding at the cooperative site. Taken together, these studies identified key structural determinants in the affinity and stoichiometry of azole interactions with CYP2E1 and consequences on catalysis that further advance an understanding of the relationship between structure and function for this enzyme.


Asunto(s)
Citocromo P-450 CYP2E1/química , Pirazoles/química , Azoles/química , Sitios de Unión , Catálisis , Activación Enzimática , Estabilidad de Enzimas , Unión Proteica , Especificidad por Sustrato
13.
Bioorg Med Chem ; 21(13): 3749-59, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23673224

RESUMEN

Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Modelos Biológicos , Redes Neurales de la Computación , Algoritmos , Citocromo P-450 CYP2C19 , Humanos , Oxidación-Reducción , Propranolol/metabolismo , Estereoisomerismo , Especificidad por Sustrato
14.
Xenobiotica ; 43(9): 755-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23327532

RESUMEN

Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity. We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes. Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 µM) and lower affinity for the cooperative site (1100 µM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity. Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Microsomas Hepáticos/metabolismo , Nitrofenoles/metabolismo , Estireno/metabolismo , Sitios de Unión , Citocromo P-450 CYP2E1/química , Aductos de ADN/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Nitrofenoles/química , Oxidación-Reducción , Estireno/química
15.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333126

RESUMEN

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. Overall, this study reveals the phenotypic consequences of whole-animal tetraploidy in C. elegans.

16.
Sci Rep ; 13(1): 18125, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872247

RESUMEN

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. This study reveals phenotypic consequences of whole-animal tetraploidy that make C. elegans an excellent model for ploidy differences.


Asunto(s)
Caenorhabditis elegans , Tetraploidía , Animales , Caenorhabditis elegans/genética , Ploidias , Poliploidía , Diploidia
17.
Drug Metab Dispos ; 40(10): 1976-83, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22807108

RESUMEN

We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (K(s) = 830 µM). A second styrene molecule then binds CYP2E1 with higher affinity (K(ss) = 110 µM) and significantly improves oxidation to achieve a k(cat) of 6.3 nmol · min(-1) · nmol CYP2E1(-1). The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from K(i) 0.51 to K(si) 0.043 µM. The inhibitor was a negative allosteric effector on styrene oxidation, because k(cat) decreased 6-fold to 0.98 nmol · min(-1) · nmol CYP2E1(-1). Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Estireno/metabolismo , Regulación Alostérica , Sitios de Unión , Inhibidores del Citocromo P-450 CYP2E1 , Inhibidores Enzimáticos/farmacología , Fomepizol , Humanos , Cinética , Microsomas Hepáticos/enzimología , Modelos Biológicos , Oxidación-Reducción , Unión Proteica , Pirazoles/farmacología , Proteínas Recombinantes/metabolismo
18.
Cells ; 11(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35053404

RESUMEN

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani's group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Hepatopatías/enzimología , Hígado/enzimología , Hígado/patología , Mitocondrias/enzimología , Animales , Biotransformación , Xenobióticos
19.
Curr Res Toxicol ; 3: 100084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957653

RESUMEN

Aims: Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results: A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity âˆ¼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 µM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 µM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation: This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions: Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.

20.
Aging Cell ; 21(2): e13530, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984806

RESUMEN

Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild-type mice and Smoothened (Smo)-floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo-deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Envejecimiento , Animales , Proliferación Celular , Proteínas Hedgehog/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Regeneración Hepática/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA