Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2207889119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994640

RESUMEN

Since about 1980, the tropical Pacific has been anomalously cold, while the broader tropics have warmed. This has caused anomalous weather in midlatitudes as well as a reduction in the apparent sensitivity of the climate associated with enhanced low-cloud abundance over the cooler waters of the eastern tropical Pacific. Recent modeling work has shown that cooler temperatures over the Southern Ocean around Antarctica can lead to cooler temperatures over the eastern tropical Pacific. Here we suggest that surface wind anomalies associated with the Antarctic ozone hole can cause cooler temperatures over the Southern Ocean that extend into the tropics. We use the short-term variability of the Southern Annular Mode of zonal wind variability to show an association between surface zonal wind variations over the Southern Ocean, cooling over the Southern Ocean, and cooling in the eastern tropical Pacific. This suggests that the cooling of the eastern tropical Pacific may be associated with the onset of the Antarctic ozone hole.


Asunto(s)
Cambio Climático , Clima , Pérdida de Ozono , Regiones Antárticas , Frío , Ozono/análisis , Océano Pacífico , Temperatura , Tiempo (Meteorología) , Viento
2.
Proc Natl Acad Sci U S A ; 113(32): 8897-9, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27482111
3.
J Adv Model Earth Syst ; 14(7): e2022MS003045, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35865456

RESUMEN

This study examines how the congestus mode of tropical convection is expressed in numerical simulations of radiative-convective equilibrium (RCE). We draw insights from the ensemble of cloud-resolving models participating in the RCE Model Intercomparison Project (RCEMIP) and from a new ensemble of two-dimensional RCE simulations. About half of the RCEMIP models produce a congestus circulation that is distinct from the deep and shallow modes. In both ensembles, the congestus circulation strengthens with large-scale convective aggregation, and in the 2D ensemble this comes at the expense of the shallow circulation centered at the top of the boundary layer. Congestus invigoration occurs because aggregation dries out the upper troposphere, which allows moist congestus outflow to undergo strong radiative cooling. The cooling generates divergence that promotes continued congestus overturning (a positive feedback). This mechanism is fundamentally similar to the driving of shallow circulations by radiative cooling at the top of the surface boundary layer. Aggregation and congestus invigoration are also associated with enhanced static stability throughout the troposphere, but a modeling experiment shows that enhanced stability is not necessary for congestus invigoration; rather, invigoration itself contributes to the stability increase via its impact on the vertical profile of radiative cooling. Changes in entrainment cooling are also found to play an important role in stability enhancement, as has been suggested previously. When present, congestus circulations have a large impact on the mean RCE atmospheric state; for this reason, their inconsistent representation in models and their impact on the real tropical atmosphere warrant further scrutiny.

4.
J Clim ; 31(24): 10059-10080, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33414575

RESUMEN

Observations from a geostationary satellite are used to describe the lifecycle of mesoscale convective systems (MCS), their associated anvil clouds, and their effects on the radiation balance over the warm pool of the tropical west Pacific Ocean. In their developing stages, MCS primarily consist of clouds that are optically thick and have a negative net cloud radiative effect (CRE). As MCS age, ice crystals in the anvil become larger, the cloud top lowers somewhat, and clouds with neutral and positive net CRE become more common. Shading from anvils causes cool anomalies in the underlying sea surface temperature (SST) of up to -0.6 °C. MCS often occur in clusters that are embedded within large westward-propagating disturbances, so shading from anvils can cool SSTs over regions spanning hundreds of kilometers. Triggering of convection is more likely to follow a warm SST anomaly than a cold SST anomaly on timescales of several days. This information is used to test hypotheses on why, over the warm pool, the average shortwave and longwave CRE are individually large but nearly cancel. The results are consistent with the hypothesis that the cancelation in CRE is caused by feedbacks between cloud albedo, large-scale circulation, and SST.

5.
Sci Adv ; 1(6): e1500157, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26601216

RESUMEN

Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

6.
Science ; 318(5857): 1731-2, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18079387
7.
Science ; 295(5556): 811-2, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11823630
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA