Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(17): 4501-4506, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632174

RESUMEN

The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.


Asunto(s)
Dopamina/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Multimerización de Proteína , Receptores de Dopamina D2/química , Receptores de Ghrelina/química , Transducción de Señal , Dopamina/genética , Dopamina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
2.
Curr Protoc Protein Sci ; 100(1): e104, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32289210

RESUMEN

Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.


Asunto(s)
Lípidos de la Membrana , Proteínas de la Membrana , Nanopartículas/química , Saccharomycetales , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
3.
Anal Chim Acta ; 1113: 26-35, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32340666

RESUMEN

Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 µg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR.


Asunto(s)
Proteínas Inmovilizadas/metabolismo , Nanopartículas/química , Compuestos Orgánicos/análisis , Receptor de Adenosina A2A/metabolismo , Cromatografía de Afinidad/métodos , Descubrimiento de Drogas , Humanos , Proteínas Inmovilizadas/química , Ligandos , Membranas Artificiales , Compuestos Orgánicos/metabolismo , Prueba de Estudio Conceptual , Unión Proteica , Receptor de Adenosina A2A/química
4.
Protein Sci ; 28(10): 1865-1879, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31423659

RESUMEN

In the continuous exploration of the VHH chemistry, biochemistry and therapeutic future use, we investigated two different production strategies of this small antibody-like protein, using an anti-HER2 VHH as a model. The total chemical synthesis of the 125 amino-acid peptide was performed with reasonable yield, even if optimization will be necessary to upgrade this kind of production. In parallel, we expressed the same sequence in two different hosts: Escherichia coli and Pichia pastoris. Both productions were successful and led to a fair amount of VHHs. The integrity and conformation of the VHH were characterized by complementary mass spectrometry approaches, while surface plasmon resonance experiments were used to assess the VHH recognition capacity and affinity toward its "antigen." Using this combination of orthogonal techniques, it was possible to show that the three VHHs-whether synthetic or recombinant ones-were properly and similarly folded and recognized the "antigen" HER2 with similar affinities, in the nanomolar range. This opens a route toward further exploration of modified VHH with unnatural amino acids and subsequently, VHH-drug conjugates.


Asunto(s)
Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Humanos , Proteínas Recombinantes/inmunología
5.
Methods Mol Biol ; 1635: 45-56, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755363

RESUMEN

In the past decade, the methylotrophic yeast Pichia pastoris has proved to be one of the most efficient systems for mass production of recombinant eukaryotic membrane proteins (MPs), leading to the crystallization and structure determination for a variety of them. The actual overexpression of functional MPs achieved with this system is, however, often accompanied by the formation of a variable but significant proportion of misfolded and/or aggregated proteins that are co-extracted and co-purified during the purification process. In order to minimize this unwanted phenomenon, we devised a novel procedure in which MPs produced in Pichia pastoris are directly solubilized from whole cells instead of crude membrane preparation. This approach aims at favoring the extraction of correctly folded membrane proteins that have been targeted to the plasma membrane, limiting the solubilization of the misfolded proteins and protein aggregates that are stored in internal membrane compartments. The method described herewith is based on the formation of protoplasts through enzymatic treatment prior to protein solubilization. This chapter details a set of protocols going from yeast cell preparation and protein solubilization to purification using affinity and size exclusion chromatography.


Asunto(s)
Proteínas de la Membrana/genética , Pichia/citología , Protoplastos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Cromatografía de Afinidad , Cromatografía en Gel , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Pichia/genética , Pichia/crecimiento & desarrollo , Conformación Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Methods Mol Biol ; 1432: 143-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27485335

RESUMEN

A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pichia/crecimiento & desarrollo , Clonación Molecular , Células Eucariotas/metabolismo , Pichia/genética , Plásmidos/genética , Ingeniería de Proteínas , Proteínas Recombinantes/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA