Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 188(6): 2759-68, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22345650

RESUMEN

θ-Defensins are cyclic octadecapeptides found in nonhuman primates whose broad antiviral spectrum includes HIV-1, HSV-1, severe acute respiratory syndrome coronavirus, and influenza A virus (IAV). We previously reported that synthetic θ-defensins called retrocyclins can neutralize and aggregate various strains of IAV and increase IAV uptake by neutrophils. This study describes two families of peptides, hapivirins and diprovirins, whose design was inspired by retrocyclins. The goal was to develop smaller partially cyclic peptides that retain the antiviral activity of retrocyclins, while being easier to synthesize. The novel peptides also allowed for systemic substitution of key residues to evaluate the role of charge or hydrophobicity on antiviral activity. Seventy-two hapivirin or diprovirin peptides are described in this work, including several whose anti-IAV activity equals or exceeds that of normal α- or θ-defensins. Some of these also had strong antibacterial and antifungal activity. These new peptides were active against H3N2 and H1N1 strains of IAV. Structural features imparting strong antiviral activity were identified through iterative cycles of synthesis and testing. Our findings show the importance of hydrophobic residues for antiviral activity and show that pegylation, which often increases a peptide's serum t(1/2) in vivo, can increase the antiviral activity of DpVs. The new peptides acted at an early phase of viral infection, and, when combined with pulmonary surfactant protein D, their antiviral effects were additive. The peptides strongly increased neutrophil and macrophage uptake of IAV, while inhibiting monocyte cytokine generation. Development of modified θ-defensin analogs provides an approach for creating novel antiviral agents for IAV infections.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Defensinas/inmunología , Defensinas/farmacología , Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Animales , Antivirales/inmunología , Línea Celular , Técnicas de Química Sintética , Cromatografía Líquida de Alta Presión , Defensinas/síntesis química , Perros , Humanos , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Monocitos/virología , Neutrófilos/virología , Péptidos , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA