Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676028

RESUMEN

Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone insulin. The two main types of DM are type 1 (T1DM) and type 2 (T2DM). Physical activity plays a crucial role in the therapy of diabetes, benefiting both types of patients. The detection, recognition, and subsequent classification of physical activity based on type and intensity are integral components of DM treatment. The continuous glucose monitoring system (CGMS) signal provides the blood glucose (BG) level, and the combination of CGMS and heart rate (HR) signals are potential targets for detecting relevant physical activity from the BG variation point of view. The main objective of the present research is the developing of an artificial intelligence (AI) algorithm capable of detecting physical activity using these signals. Using multiple recurrent models, the best-achieved performance of the different classifiers is a 0.99 area under the receiver operating characteristic curve. The application of recurrent neural networks (RNNs) is shown to be a powerful and efficient solution for accurate detection and analysis of physical activity in patients with DM. This approach has great potential to improve our understanding of individual activity patterns, thus contributing to a more personalized and effective management of DM.


Asunto(s)
Algoritmos , Glucemia , Ejercicio Físico , Frecuencia Cardíaca , Redes Neurales de la Computación , Humanos , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Masculino , Diabetes Mellitus/diagnóstico , Femenino , Adulto , Curva ROC , Diabetes Mellitus Tipo 2/diagnóstico , Inteligencia Artificial , Diabetes Mellitus Tipo 1/fisiopatología , Persona de Mediana Edad
2.
Comput Biol Med ; 182: 109167, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39326266

RESUMEN

For individuals diagnosed with diabetes mellitus, it is crucial to keep a record of the carbohydrates consumed during meals, as this should be done at least three times daily, amounting to an average of six meals. Unfortunately, many individuals tend to overlook this essential task. For those who use an artificial pancreas, carbohydrate intake proves to be a critical factor, as it can activate the insulin pump in the artificial pancreas to deliver insulin to the body. To address this need, we have developed personalized deep learning model that can accurately detect carbohydrate intake with a high degree of accuracy. Our study employed a publicly available dataset gathered by an Inertial Measurement Unit (IMU), which included accelerometer and gyroscope data. The data was sampled at a rate of 15 Hz, necessitating preprocessing. For our tailored to the patient model, we utilized a recurrent network comprising Long short-term memory (LSTM) layers. Our findings revealed a median F1 score of 0.99, indicating a high level of accuracy. Additionally, the confusion matrix displayed a difference of only 6 s, further validating the model's accuracy. Therefore, we can confidently assert that our model architecture exhibits a high degree of accuracy. Our model performed well above 90% on the dataset, with most results between 98%-99%. The recurrent networks improved the problem-solving capabilities significantly, though some outliers remained. The model's average prediction latency was 5.5 s, suggesting that later meal predictions result in extended meal progress predictions. The dataset's limitation of mostly single-day data points raises questions about multi-day performance, which could be explored by collecting multi-day data, including night periods. Future enhancements might involve transformer networks and shorter time windows to improve model responsiveness and accuracy. Therefore, we can confidently assert that our model exhibits a high degree of accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA