RESUMEN
BACKGROUND: Mitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species generation, results in lipid peroxidation and ferroptosis. Ferroptosis is an inflammatory mode of cell death that promotes complement activation and macrophage recruitment. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit cellular phenotypes that promote ferroptosis. Moreover, there is ectopic complement deposition and inflammatory macrophage accumulation in the pulmonary vasculature. However, the effects of ferroptosis inhibition on these pathogenic mechanisms and the cellular landscape of the pulmonary vasculature are incompletely defined. METHODS: Multiomics and physiological analyses evaluated how ferroptosis inhibition-modulated preclinical PAH. The impact of adeno-associated virus 1-mediated expression of the proferroptotic protein ACSL (acyl-CoA synthetase long-chain family member) 4 on PAH was determined, and a genetic association study in humans further probed the relationship between ferroptosis and pulmonary hypertension. RESULTS: Ferrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity in monocrotaline rats. RNA-sequencing and proteomics analyses demonstrated that ferroptosis was associated with PAH severity. RNA-sequencing, proteomics, and confocal microscopy revealed that complement activation and proinflammatory cytokines/chemokines were suppressed by ferrostatin-1. In addition, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundance and gene activation patterns as revealed by deconvolution RNA-sequencing. Ferroptotic pulmonary arterial endothelial cell damage-associated molecular patterns restructured the transcriptomic signature and mitochondrial morphology, promoted the proliferation of pulmonary artery smooth muscle cells, and created a proinflammatory phenotype in monocytes in vitro. Adeno-associated virus 1-Acsl4 induced an inflammatory PAH phenotype in rats. Finally, single-nucleotide polymorphisms in 6 ferroptosis genes identified a potential link between ferroptosis and pulmonary hypertension severity in the Vanderbilt BioVU repository. CONCLUSIONS: Ferroptosis promotes PAH through metabolic and inflammatory mechanisms in the pulmonary vasculature.
RESUMEN
The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Acilación , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Unión ProteicaRESUMEN
Facioscapulohumeral muscular dystrophy (FSHD) is caused by inappropriate expression of the double homeodomain protein DUX4. DUX4 has bimodal effects, inhibiting myogenic differentiation and blocking MyoD at low levels of expression, and killing myoblasts at high levels. Pax3 and Pax7, which contain related homeodomains, antagonize the cell death phenotype of DUX4 in C2C12 cells, suggesting some type of competitive interaction. Here, we show that the effects of DUX4 on differentiation and MyoD expression require the homeodomains but do not require the C-terminal activation domain of DUX4. We tested the set of equally related homeodomain proteins (Pax6, Pitx2c, OTX1, Rax, Hesx1, MIXL1 and Tbx1) and found that only Pax3 and Pax7 display phenotypic competition. Domain analysis on Pax3 revealed that the Pax3 homeodomain is necessary for phenotypic competition, but is not sufficient, as competition also requires the paired and transcriptional activation domains of Pax3. Remarkably, substitution mutants in which DUX4 homeodomains are replaced by Pax7 homeodomains retain the ability to inhibit differentiation and to induce cytotoxicity.
Asunto(s)
Proteínas de Homeodominio/genética , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Proteína MioD/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Células Musculares/patología , Proteína MioD/metabolismo , Mioblastos/metabolismo , Mioblastos/patología , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Dominios Proteicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de SeñalRESUMEN
The Arabidopsis thaliana glycosyl transferases SPINDLY (SPY) and SECRET AGENT (SEC) modify nuclear and cytosolic proteins with O-linked fucose or O-linked N-acetylglucosamine (O-GlcNAc), respectively. O-fucose and O-GlcNAc modifications can occur at the same sites. SPY interacts physically and genetically with GIGANTEA (GI), suggesting that it could be modified by both enzymes. Previously, we found that, when co-expressed in Escherichia coli, SEC modifies GI; however, the modification site was not determined. By analyzing the overlapping sub-fragments of GI, we identified a region that was modified by SEC in E. coli. Modification was undetectable when threonine 829 (T829) was mutated to alanine, while the T834A and T837A mutations reduced the modification, suggesting that T829 was the primary or the only modification site. Mapping using mass spectrometry detected only the modification of T829. Previous studies have shown that the positions modified by SEC in E. coli are modified in planta, suggesting that T829 is O-GlcNAc modified in planta.
RESUMEN
BACKGROUND: Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. METHODS: Transcriptomics and proteomics analyses defined the pathways associated with cardiac magnetic resonance imaging (MRI)-derived values of RV hypertrophy, dilation, and dysfunction in control and pulmonary artery banded (PAB) pigs. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare molecular responses across species. RESULTS: PAB pigs displayed significant right ventricle/ventricular (RV) hypertrophy, dilation, and dysfunction as quantified by cardiac magnetic resonance imaging. Transcriptomic and proteomic analyses identified pathways associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the 3 species. FAO and ETC proteins and transcripts were mostly downregulated in rats but were predominately upregulated in PAB pigs, which more closely matched the human response. All species exhibited similar dysregulation of the dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy pathways. CONCLUSIONS: The porcine metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and pigs may more accurately recapitulate metabolic aspects of human RVF.
Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Derecha , Humanos , Ratas , Animales , Porcinos , Multiómica , Proteómica , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Función Ventricular Derecha , Modelos Animales de Enfermedad , Remodelación Ventricular/fisiologíaRESUMEN
Right ventricular dysfunction (RVD) is a risk factor for mortality in multiple cardiovascular diseases, but approaches to combat RVD are lacking. Therapies used for left heart failure are largely ineffective in RVD, and thus the identification of molecules that augment RV function could improve outcomes in a wide-array of cardiac limitations. Junctophilin-2 (JPH2) is an essential protein that plays important roles in cardiomyocytes, including calcium handling/maintenance of t-tubule structure and gene transcription. Additionally, JPH2 may regulate mitochondrial function as Jph2 knockout mice exhibit cardiomyocyte mitochondrial swelling and cristae derangements. Moreover, JPH2 knockdown in embryonic stem cell-derived cardiomyocytes induces downregulation of the mitochondrial protein mitofusin-2 (MFN2), which disrupts mitochondrial cristae structure and transmembrane potential. Impaired mitochondrial metabolism drives RVD, and here we evaluated the mitochondrial role of JPH2. We showed JPH2 directly interacts with MFN2, ablation of JPH2 suppresses mitochondrial biogenesis, oxidative capacity, and impairs lipid handling in iPSC-CM. Gene therapy with AAV9-JPH2 corrects RV mitochondrial morphological defects, mitochondrial fatty acid metabolism enzyme regulation, and restores the RV lipidomic signature in the monocrotaline rat model of RVD. Finally, AAV-JPH2 improves RV function without altering PAH severity, showing JPH2 provides an inotropic effect to the dysfunction RV.
RESUMEN
Intermittent fasting (IF) extends life span via pleotropic mechanisms, but one important molecular mediator is adenosine monophosphate-activated protein kinase (AMPK). AMPK enhances lipid metabolism and modulates microtubule dynamics. Dysregulation of these molecular pathways causes right ventricular (RV) failure in patients with pulmonary arterial hypertension. In rodent pulmonary arterial hypertension, IF activates RV AMPK, which restores mitochondrial and peroxisomal morphology and restructures mitochondrial and peroxisomal lipid metabolism protein regulation. In addition, IF increases electron transport chain protein abundance and activity in the right ventricle. Echocardiographic and hemodynamic measures of RV function are positively associated with fatty acid oxidation and electron transport chain protein levels. IF also combats heightened microtubule density, which normalizes transverse tubule structure.
RESUMEN
Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no approved treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. Here, we used transcriptomics and proteomics analyses to define the molecular pathways associated with cardiac MRI-derived values of RV hypertrophy, dilation, and dysfunction in pulmonary artery banded (PAB) piglets. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare the three species. Transcriptomic and proteomic analyses identified multiple pathways that were associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the three species. FAO and ETC proteins and transcripts were mostly downregulated in rats, but were predominately upregulated in PAB pigs, which more closely matched the human data. Thus, the pig PAB metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and that pigs more accurately recapitulate the metabolic aspects of human RVF.
RESUMEN
BACKGROUND: Right ventricular dysfunction (RVD) is the leading cause of death in pulmonary arterial hypertension (PAH), but no RV-specific therapy exists. We showed microtubule-mediated junctophilin-2 dysregulation (MT-JPH2 pathway) causes t-tubule disruption and RVD in rodent PAH, but the druggable regulators of this critical pathway are unknown. GP130 (glycoprotein 130) activation induces cardiomyocyte microtubule remodeling in vitro; however, the effects of GP130 signaling on the MT-JPH2 pathway and RVD resulting from PAH are undefined. METHODS: Immunoblots quantified protein abundance, quantitative proteomics defined RV microtubule-interacting proteins (MT-interactome), metabolomics evaluated the RV metabolic signature, and transmission electron microscopy assessed RV cardiomyocyte mitochondrial morphology in control, monocrotaline, and monocrotaline-SC-144 (GP130 antagonist) rats. Echocardiography and pressure-volume loops defined the effects of SC-144 on RV-pulmonary artery coupling in monocrotaline rats (8-16 rats per group). In 73 patients with PAH, the relationship between interleukin-6, a GP130 ligand, and RVD was evaluated. RESULTS: SC-144 decreased GP130 activation, which normalized MT-JPH2 protein expression and t-tubule structure in the monocrotaline RV. Proteomics analysis revealed SC-144 restored RV MT-interactome regulation. Ingenuity pathway analysis of dysregulated MT-interacting proteins identified a link between microtubules and mitochondrial function. Specifically, SC-144 prevented dysregulation of electron transport chain, Krebs cycle, and the fatty acid oxidation pathway proteins. Metabolomics profiling suggested SC-144 reduced glycolytic dependence, glutaminolysis induction, and enhanced fatty acid metabolism. Transmission electron microscopy and immunoblots indicated increased mitochondrial fission in the monocrotaline RV, which SC-144 mitigated. GP130 antagonism reduced RV hypertrophy and fibrosis and augmented RV-pulmonary artery coupling without altering PAH severity. In patients with PAH, higher interleukin-6 levels were associated with more severe RVD (RV fractional area change 23±12% versus 30±10%, P=0.002). CONCLUSIONS: GP130 antagonism reduces MT-JPH2 dysregulation, corrects metabolic derangements in the RV, and improves RVD in monocrotaline rats.
Asunto(s)
Receptor gp130 de Citocinas/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Proteínas de la Membrana/farmacología , Disfunción Ventricular Derecha/tratamiento farmacológico , Animales , Receptor gp130 de Citocinas/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/fisiopatología , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular/efectos de los fármacosRESUMEN
The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.
Asunto(s)
Acetilglucosamina/metabolismo , Evolución Molecular , N-Acetilglucosaminiltransferasas/metabolismo , Plantas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/fisiología , N-Acetilglucosaminiltransferasas/fisiología , Filogenia , Plantas/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido/genética , Proteínas Represoras/fisiología , Alineación de SecuenciaRESUMEN
In the originally published version of this Article, an incorrect grant number, RO1 NS083549, was acknowledged. The correct grant number is RO1 AR055685. This error has now been corrected in both the PDF and HTML versions of the Article.
RESUMEN
Facioscapulohumeral muscular dystrophy is a slowly progressive but devastating myopathy caused by loss of repression of the transcription factor DUX4; however, DUX4 expression is very low, and protein has not been detected directly in patient biopsies. Efforts to model DUX4 myopathy in mice have foundered either in being too severe, or in lacking muscle phenotypes. Here we show that the endogenous facioscapulohumeral muscular dystrophy-specific DUX4 polyadenylation signal is surprisingly inefficient, and use this finding to develop an facioscapulohumeral muscular dystrophy mouse model with muscle-specific doxycycline-regulated DUX4 expression. Very low expression levels, resulting in infrequent DUX4 + myonuclei, evoke a slow progressive degenerative myopathy. The degenerative process involves inflammation and a remarkable expansion in the fibroadipogenic progenitor compartment, leading to fibrosis. These animals also show high frequency hearing deficits and impaired skeletal muscle regeneration after injury. This mouse model will facilitate in vivo testing of therapeutics, and suggests the involvement of fibroadipogenic progenitors in facioscapulohumeral muscular dystrophy.Facioscapulohumeral muscular dystrophy is a severe myopathy that is caused by abnormal activation of DUX4, and for which a suitable mouse model does not exist. Here, the authors generate a novel mouse model with titratable expression of DUX4, and show that it recapitulates several features of the human pathology.
Asunto(s)
Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked GlcNAc (O-GlcNAc). While Arabidopsis has two O-GlcNAc transferases, SECRET AGENT (SEC) and SPINDLY (SPY), previous work suggests that SEC modifies PPV-CP and that the modification plays a role in the infection process. Here, we show that when co-expressed in Escherichia coli SEC modifies PPV-CP. Deletion mapping and site-directed mutagenesis identified three threonine and a serine located near the N-terminus of PPV-CP that are modified by SEC. Two of these threonines have recently been shown to be modified in virus from plants suggesting that SEC has the same specificity in plants and E. coli.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de la Cápside/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Virus Eruptivo de la Ciruela/metabolismo , Sustitución de Aminoácidos , Arabidopsis/enzimología , Secuencia de Bases , Sitios de Unión , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , ADN Viral/genética , Glicosilación , Mutagénesis Sitio-Dirigida , Virus Eruptivo de la Ciruela/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Serina/química , Treonina/químicaRESUMEN
A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.
Asunto(s)
Proteínas de la Cápside/química , Virus Eruptivo de la Ciruela/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , ADN Viral/genética , Glicosilación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/genética , Virus Eruptivo de la Ciruela/patogenicidad , Procesamiento Proteico-Postraduccional , Prunus/virología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Treonina/química , Nicotiana/virologíaRESUMEN
The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting.
Asunto(s)
Arabidopsis/genética , N-Acetilglucosaminiltransferasas/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Cruzamientos Genéticos , Ligamiento Genético , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Mutagénesis Insercional , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Semillas/fisiología , Alineación de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.
Asunto(s)
Genes Dominantes , Genes Ligados a X , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Eucromatina/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Distrofia Muscular Facioescapulohumeral/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Retina/patologíaRESUMEN
Misexpression of the double homeodomain protein DUX4 in muscle is believed to cause facioscapulohumeral muscular dystrophy (FSHD). Although strategies are being devised to inhibit DUX4 activity in FSHD, there is little known about the normal function of this protein. Expression of DUX4 has been reported in pluripotent cells and testis. To test the idea that DUX4 may be involved in initiating a germ lineage program in pluripotent cells, we interrogated the effect of expressing the human DUX4 gene at different stages during in vitro differentiation of murine embryonic stem (ES) cells. We find that expression of even low levels of DUX4 is incompatible with pluripotency: DUX4-expressing ES cells downregulate pluripotency markers and rapidly differentiate even in the presence of leukemia inhibitory factor (LIF) and bone morphogenetic protein 4 (BMP4). Transcriptional profiling revealed unexpectedly that DUX4 induced a neurectodermal program. Embryoid bodies exposed to a pulse of DUX4 expression displayed severely inhibited mesodermal differentiation, but acquired neurogenic potential. In a serum-containing medium in which neurogenic differentiation is minimal, DUX4 expression served as a neural-inducing factor, enabling the differentiation of Tuj1+ neurites. These data suggest that besides effects in muscle and germ cells, the involvement of DUX4 in neurogenesis should be considered as anti-DUX4 therapies are developed.
Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neurogénesis/genética , Animales , Proteína Morfogenética Ósea 4/metabolismo , Línea Celular , Cuerpos Embrioides/metabolismo , Expresión Génica , Proteínas de Homeodominio/biosíntesis , Humanos , Factor Inhibidor de Leucemia/metabolismo , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismoRESUMEN
OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease with an unclear genetic mechanism. Most patients have a contraction of the D4Z4 macrosatellite repeat array at 4qter, which is thought to cause partial demethylation (FSHD1) of the contracted allele. Demethylation has been surveyed at 3 restriction enzyme sites in the first repeat and only a single site across the entire array, and current models postulate that a generalized D4Z4 chromatin alteration causes FSHD. The background of normal alleles has confounded the study of epigenetic alterations; however, rare patients (FSHD2) have a form of the disease in which demethylation is global, i.e., on all D4Z4 elements throughout the genome. Our objective was to take advantage of the global nature of FSHD2 to identify where disease-relevant methylation changes occur within D4Z4. METHODS: Using bisulfite sequencing of DNA from blood and myoblast cells, methylation levels at 74 CpG sites across 3 disparate regions within D4Z4 were measured in FSHD2 patients and controls. RESULTS: We found that rates of demethylation caused by FSHD2 are not consistent across D4Z4. We identified a focal region of extreme demethylation within a 5' domain, which we named DR1. Other D4Z4 regions, including the DUX4 ORF, were hypomethylated but to a much lesser extent. CONCLUSIONS: These data challenge the simple view that FSHD is caused by a broad "opening" of D4Z4 and lead us to postulate that the region of focal demethylation is the site of action of the key D4Z4 chromatin regulatory factors that go awry in FSHD.
Asunto(s)
Cromatina/genética , Islas de CpG/genética , Metilación de ADN/genética , Distrofia Muscular Facioescapulohumeral/genética , Mioblastos/fisiología , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 4 , Proteínas de Homeodominio/genética , Humanos , Fenotipo , Mapeo RestrictivoRESUMEN
This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.