Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 48(2): 1493-1503, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33590411

RESUMEN

Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p < 0.05). Moreover, ZFP36L2 inhibition led to increased cell cycle arrest and decreased cell proliferation. Downstream analysis showed that the sub-lethal dose of temozolomide and siZFP26L2 caused major upregulation of BCL2-associated X, apoptosis regulator (BAX). ZFP36L2 has oncogenic and chemosensitive characteristics and may play an important role in gliomagenesis through cell proliferation, cell cycle arrest and apoptosis. This suggests that RNAi combined with chemotherapy treatment such as temozolomide may be a potential GBM therapeutic intervention in the future.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Temozolomida/farmacología , Factores de Transcripción/genética , Proteína X Asociada a bcl-2/genética , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Molecules ; 20(6): 10280-97, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26046324

RESUMEN

Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Cromanos/farmacología , Citotoxinas/farmacología , Alcoholes Grasos/farmacología , Vitamina E/análogos & derivados , Caspasa 3 , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HT29 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Especificidad de Órganos , Transducción de Señal , Vitamina E/farmacología
3.
BMC Complement Altern Med ; 14: 213, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24980711

RESUMEN

BACKGROUND: Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment. METHODS: In this study, we investigated the interaction of GTT and HC and its mode of cell death on glioma cell lines. GTT or HC alone and in combination were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) by [3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)- 2H- tetrazolium, inner salt] MTS assay. The interactions of each combination were evaluated by using the combination index (CI) obtained from an isobologram. RESULTS: Individually, GTT or HC displayed mild growth inhibitory effects against glioma cancer cell lines at concentration values ranging from 42-100 µg/ml and 75-119 µg/ml respectively. However, the combination of sub-lethal doses of GTT + HC dramatically enhanced the inhibition of glioma cancer cell proliferation and exhibited a strong synergistic effect on 1321N1 with CI of 0.55, and CI = 0.54 for SW1783. While in LN18 cells, moderate synergistic interaction of GTT + HC was observed with CI value of 0.73. Exposure of grade II, III and IV cells to combined treatments for 24 hours led to increased apoptosis as determined by annexin-V FITC/PI staining and caspase-3 apoptosis assay, showing caspase-3 activation of 27%, 7.1% and 79% respectively. CONCLUSION: In conclusion, combined treatments with sub-effective doses of GTT and HC resulted in synergistic inhibition of cell proliferation through the induction of apoptosis of human glioma cells in vitro.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Cromanos/farmacología , Eugenol/análogos & derivados , Glioma/tratamiento farmacológico , Vitamina E/análogos & derivados , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromanos/administración & dosificación , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Eugenol/administración & dosificación , Eugenol/farmacología , Glioma/patología , Humanos , Vitamina E/administración & dosificación , Vitamina E/farmacología
4.
Molecules ; 19(9): 14528-41, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25221872

RESUMEN

Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.


Asunto(s)
Catequina/análogos & derivados , Catecoles/administración & dosificación , Alcoholes Grasos/administración & dosificación , Glioma/tratamiento farmacológico , Tocotrienoles/administración & dosificación , Apoptosis/efectos de los fármacos , Catequina/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioma/patología , Humanos
5.
BMC Pulm Med ; 12: 27, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726610

RESUMEN

BACKGROUND: Exacerbations, a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD), affect the quality of life and prognosis. Treatment recommendations as provided in the evidence-based guidelines are not consistently followed, partly due to absence of simplified task-oriented approach to care. In this study, we describe the development and implementation of a clinical pathway (CP) and evaluate its effectiveness in the management of COPD exacerbation. METHODS: We developed a CP and evaluated its effectiveness in a non-randomized prospective study with historical controls on patients admitted for exacerbation of COPD to Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Consecutive patients who were admitted between June 2009 and December 2010 were prospectively recruited into the CP group. Non-CP historical controls were obtained from case records of patients admitted between January 2008 and January 2009. Clinical outcomes were evaluated by comparing the length of stay (LOS), complication rates, readmissions, and mortality rates. RESULTS: Ninety-five patients were recruited in the CP group and 98 patients were included in the non-CP historical group. Both groups were comparable with no significant differences in age, sex and severity of COPD (p = 0.641). For clinical outcome measures, patients in the CP group had shorter length of stay than the non-CP group (median (IQR): 5 (4-7) days versus 7 (7-9) days, p < 0.001) and 24.1% less complications (14.7% versus 38.8%, p < 0.001). We did not find any significant differences in readmission and mortality rates. CONCLUSION: The implementation of CP -reduced the length of stay and complication rates of patients hospitalized for acute exacerbation of COPD.


Asunto(s)
Vías Clínicas , Manejo de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Femenino , Mortalidad Hospitalaria , Humanos , Tiempo de Internación/estadística & datos numéricos , Malasia , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Estudios Retrospectivos , Resultado del Tratamiento
6.
Biochem Genet ; 50(3-4): 298-308, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21983932

RESUMEN

This study investigated the association of hepatocyte nuclear factor 4 (HNF4) alpha single nucleotide polymorphisms (SNPs) with type 2 diabetes with or without metabolic syndrome in Malaysia. Nine HNF4 alpha SNPs were genotyped in 390 type 2 diabetic subjects with metabolic syndrome, 135 type 2 diabetic subjects without metabolic syndrome, and 160 control subjects. The SNPs rs4810424, rs1884613, and rs2144908 were associated with protection against type 2 diabetes without metabolic syndrome (recessive P = 0.018, OR 0.32; P = 0.004, OR 0.25; P = 0.005, OR 0.24, respectively). The 6-SNP haplotype2 CCCGTC containing the risk genotype of these SNPs was associated with higher risk for type 2 diabetes with or without metabolic syndrome (P = 0.002, OR 2.2; P = 0.004, OR 3.1). These data suggest that HNF4 alpha SNPs and haplotypes contributed to increased type 2 diabetes risk in the Malaysian population.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Factor Nuclear 4 del Hepatocito/genética , Síndrome Metabólico/genética , Polimorfismo de Nucleótido Simple , Adulto , Secuencia de Bases , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Intrones , Desequilibrio de Ligamiento , Modelos Logísticos , Malasia , Masculino , Síndrome Metabólico/complicaciones , Persona de Mediana Edad , Modelos Genéticos , Regiones Promotoras Genéticas , Factores de Riesgo , Análisis de Secuencia de ADN
7.
Front Pharmacol ; 13: 844199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392560

RESUMEN

Emerging reports have shown therapeutic potential of hydroxychavicol (HC) and epigallocatechin-3-gallate (EGCG) against cancer cells, however high concentrations are required to achieve the anticancer activity. We reported the synergy of low combination doses of EGCG+HC in glioma cell lines 1321N1, SW1783, and LN18 by assessing the effects of EGCG+HC through functional assays. Using high throughput RNA sequencing, the molecular mechanisms of EGCG+HC against glioma cell lines were revealed. EGCG/HC alone inhibited the proliferation of glioma cell lines, with IC50 values ranging from 82 to 302 µg/ml and 75 to 119 µg/ml, respectively. Sub-effective concentrations of combined EGCG+HC enhanced the suppression of glioma cell growth, with SW1783 showing strong synergism with a combination index (CI) of 0.55 and LN18 showing a CI of 0.51. A moderate synergistic interaction of EGCG+HC was detected in 1321N1 cells, with a CI value of 0.88. Exposure of 1321N1, SW1783, and LN18 cells to EGCG+HC for 24 h induces cell death, with caspase-3 activation rates of 52%, 57%, and 9.4%, respectively. However, the dose for SW1783 is cytotoxic to normal cells, thus this dose was excluded from other tests. EGCG+HC induced cell cycle arrest at S phase and reduced 1321N1 and LN18 cell migration and invasion. Combined EGCG+HC amplified its anticancer effect by downregulating the axon guidance process and metabolic pathways, while simultaneously interfering with endoplasmic reticulum unfolded protein response pathway. Furthermore, EGCG+HC exerted its apoptotic effect through the alteration of mitochondrial genes such as MT-CO3 and MT-RNR2 in 1321N1 and LN18 cells respectively. EGCG+HC dynamically altered DYNLL1 alternative splicing expression in 1321N1 and DLD splicing expression in LN18 cell lines. Our work indicated the pleiotropic effects of EGCG+HC treatment, as well as particular target genes that might be investigated for future glioma cancer therapeutic development.

8.
Int J Mol Med ; 46(2): 685-699, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32468002

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta­analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON­TARGETplus siRNA library on LN18 and U87MG. Tousled­like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh­TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.


Asunto(s)
Glioblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/genética , Humanos , Ratones , Ratones Desnudos , Sistemas de Lectura Abierta/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Physiol Biochem ; 75(4): 499-517, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31414341

RESUMEN

Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cromanos/farmacología , Eugenol/análogos & derivados , Glioma/tratamiento farmacológico , Vitamina E/análogos & derivados , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Eugenol/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , Vitamina E/farmacología
10.
Asian Pac J Cancer Prev ; 20(2): 509-517, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30803214

RESUMEN

Introduction: Microsatellite instability (MSI) is a hallmark of defective DNA mismatch repair (MMR) of genes especially MLH1 and MSH2. It is frequently involved in the carcinogenesis of various tumours including gastric cancer (GC). However, MSI in GCs have not been reported in Malaysia before. Objective: This study was conducted to determine the microsatellite instability (MSI) status in gastric cancer by microsatellite analysis, sequencing, its association with MLH1 and MSH2 protein expression and H.pylori infection by immunohistochemistry. Method: A total of 60 gastric cancer cases were retrieved. DNA was extracted from paired normal and tumour tissues while MLH1 and MSH2 protein expression as well as H. pylori status were determined by IHC staining. For microsatellite analysis, polymerase chain reaction (PCR) was performed for paired tissue samples using a panel of five microsatellite markers. MSI-positive results were subjected for DNA sequencing to assess mutations in the MLH1 and MSH2 genes. Results: Microsatellite analysis identified ten MSI positive cases (16.7%), out of which only six cases (10.3%) showed absence of MLH1 (n=3) or MSH2 (n=3) protein expression by IHC. The most frequent microsatellite marker in MSI positive cases was BAT26 (90%). Nine of ten MSI positive cases were intestinal type with one diffuse and all were located distally. H. pylori infection was detected in 13 of 60 cases (21.7%) including in three MSI positive cases. All these results however were not statistically significant. Our sequencing data displayed novel mutations. However these data were not statistically correlated with expression levels of MLH1 and MSH2 proteins by IHC. This may be due to small sample size to detect small or moderately sized effects. Conclusion: The frequency of MSI in this study was comparable with published results. Determination of affected MMR genes by more than two antibodies may increase the sensitivity of IHC to that of MSI analysis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Mutación de Línea Germinal , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/patología , Tasa de Supervivencia
11.
Front Pharmacol ; 8: 540, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28871224

RESUMEN

About 40% of lung cancer cases globally are diagnosed at the advanced stage. Lung cancer has a high mortality and overall survival in stage I disease is only 70%. This study was aimed at finding a candidate of transcription regulator that initiates the mechanism for metastasis by integrating computational and functional studies. The genes involved in lung cancer were retrieved using in silico software. 10 kb promoter sequences upstream were scanned for the master regulator. Transient transfection of shRNA NFIXs were conducted against A549 and NCI-H1299 cell lines. qRT-PCR and functional assays for cell proliferation, migration and invasion were carried out to validate the involvement of NFIX in metastasis. Genome-wide gene expression microarray using a HumanHT-12v4.0 Expression BeadChip Kit was performed to identify differentially expressed genes and construct a new regulatory network. The in silico analysis identified NFIX as a master regulator and is strongly associated with 17 genes involved in the migration and invasion pathways including IL6ST, TIMP1 and ITGB1. Silencing of NFIX showed reduced expression of IL6ST, TIMP1 and ITGB1 as well as the cellular proliferation, migration and invasion processes. The data was integrated with the in silico analyses to find the differentially expressed genes. Microarray analysis showed that 18 genes were expressed differentially in both cell lines after statistical analyses integration between t-test, LIMMA and ANOVA with Benjamini-Hochberg adjustment at p-value < 0.05. A transcriptional regulatory network was created using all 18 genes, the existing regulated genes including the new genes PTCH1, NFAT5 and GGCX that were found highly associated with NFIX, the master regulator of metastasis. This study suggests that NFIX is a promising target for therapeutic intervention that is expected to inhibit metastatic recurrence and improve survival rate.

12.
Front Physiol ; 8: 231, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484394

RESUMEN

The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.

13.
Asian Pac J Cancer Prev ; 17(1): 25-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26838219

RESUMEN

Lymph node metastasis (LNM) in papillary thyroid cancer (PTC) has been shown to be associated with increased risk of locoregional recurrence, poor prognosis and decreased survival, especially in older patients. Hence, there is a need for a reliable biomarker for the prediction of LNM in this cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene translation or degradation and play key roles in numerous cellular functions including cell-cycle regulation, differentiation, apoptosis, invasion and migration. Various studies have demonstrated deregulation of miRNA levels in many diseases including cancers. While a large number of miRNAs have been identified from PTCs using various means, association of miRNAs with LNM in such cases is still controversial. Furthermore, studies linking most of the identified miRNAs to the mechanism of LNM have not been well documented. The aim of this review is to update readers on the current knowledge of miRNAs in relation to LNM in PTC.


Asunto(s)
Carcinoma/genética , Carcinoma/patología , Metástasis Linfática/genética , Metástasis Linfática/patología , MicroARNs/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Animales , Biomarcadores de Tumor/genética , Carcinoma Papilar , Humanos , Ganglios Linfáticos/patología , Cáncer Papilar Tiroideo
14.
Int J Oncol ; 49(6): 2359-2366, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27840905

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain tumor and most patients have poor prognosis. Despite many advances in research, there has been no significant improvement in the patient survival rate. New molecular therapies are being studied and RNA interference (RNAi) therapy is one of the promising approaches to improve prognosis and increase survival in patients with GBM. We performed a meta­analysis of five different microarray datasets and identified 460 significantly upregulated genes in GBM. Loss­of­function screening of these upregulated genes using LN18 cells was performed to identify the significant target genes for glioma. Further investigations were performed using siRNA in LN18 cells and various functional assays were carried out on the selected candidate gene to understand further its role in GBM. We identified PROS1 as a candidate gene for GBM from the meta­analysis and RNAi screening. Knockdown of PROS1 in LN18 cells significantly induced apoptosis compared to siPROS1­untreated cells (p<0.05). Migration in cells treated with siPROS1 was reduced significantly (p<0.05) and this was confirmed with wound-healing assay. PROS1 knockdown showed substantial reduction in cell invasion up to 82% (p<0.01). In addition, inhibition of PROS1 leads to decrease in cellular proliferation by 18%. Knockdown of PROS1 in LN18 cells caused activation of both of the extrinsic and intrinsic apoptotic pathways. It caused major upregulation of FasL which is important for death receptor signaling activation and also downregulation of GAS6 and other members of TAM family of receptors. PROS1 may play an important role in the development of GBM through cellular proliferation, migration and invasion as well as apoptosis. Targeting PROS1 in GBM could be a novel therapeutic strategy in GBM treatment.


Asunto(s)
Apoptosis/genética , Proteínas Sanguíneas/genética , Neoplasias Encefálicas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Glioblastoma/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Glioblastoma/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Invasividad Neoplásica/genética , Proteína S , Proteínas Proto-Oncogénicas/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
15.
BMC Med Genomics ; 9(1): 58, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27609023

RESUMEN

BACKGROUND: Histopathological assessment has a low potential to predict clinical outcome in patients with the same stage of colorectal cancer. More specific and sensitive biomarkers to determine patients' survival are needed. We aimed to determine gene expression signatures as reliable prognostic marker that could predict survival of colorectal cancer patients with Dukes' B and C. METHODS: We examined microarray gene expression profiles of 78 archived tissues of patients with Dukes' B and C using the Illumina DASL assay. The gene expression data were analyzed using the GeneSpring software and R programming. RESULTS: The outliers were detected and replaced with randomly chosen genes from the 90 % confidence interval of the robust mean for each group. We performed three statistical methods (SAM, LIMMA and t-test) to identify significant genes. There were 19 significant common genes identified from microarray data that have been permutated 100 times namely NOTCH2, ITPRIP, FRMD6, GFRA4, OSBPL9, CPXCR1, SORCS2, PDC, C12orf66, SLC38A9, OR10H5, TRIP13, MRPL52, DUSP21, BRCA1, ELTD1, SPG7, LASS6 and DUOX2. This 19-gene signature was able to significantly predict the survival of patients with colorectal cancer compared to the conventional Dukes' classification in both training and test sets (p < 0.05). The performance of this signature was further validated as a significant independent predictor of survival using patient cohorts from Australia (n = 185), USA (n = 114), Denmark (n = 37) and Norway (n = 95) (p < 0.05). Validation using quantitative PCR confirmed similar expression pattern for the six selected genes. CONCLUSION: Profiling of these 19 genes may provide a more accurate method to predict survival of patients with colorectal cancer and assist in identifying patients who require more intensive treatment.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Biología Computacional , Transcriptoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Análisis de Supervivencia
16.
PLoS One ; 10(9): e0138810, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413858

RESUMEN

BACKGROUND: Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum ß-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. RESULTS: The proposed method relies on a ß-weight function, which produces values between 0 and 1. The ß-weight function with ß = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the ß-weights is used to calculate the cut-off point, which is compared to the observed ß-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. CONCLUSION: Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression.


Asunto(s)
Análisis de Varianza , Perfilación de la Expresión Génica/métodos , Neoplasias del Colon/genética , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Tamaño de la Muestra
17.
Oncol Rep ; 34(1): 22-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25997610

RESUMEN

Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) p-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/genética , Epigenómica , Genómica , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Neoplasias Colorrectales/patología , Islas de CpG/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas
18.
Int J Oncol ; 45(5): 1959-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25175708

RESUMEN

There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Metilación de ADN/genética , Epigénesis Genética , Anciano , Neoplasias de la Mama/patología , Islas de CpG/genética , Epigenómica , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Genómica , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Regiones Promotoras Genéticas
19.
PLoS One ; 9(4): e92553, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24694993

RESUMEN

Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.


Asunto(s)
Neoplasias Colorrectales , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Adulto , Anciano , Cromosomas Humanos Par 20/genética , Cromosomas Humanos Par 8/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
20.
Oxid Med Cell Longev ; 2013: 189129, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24381713

RESUMEN

Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.


Asunto(s)
Senescencia Celular/genética , Regulación de la Expresión Génica , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Anciano de 80 o más Años , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA