Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Bone Miner Metab ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850283

RESUMEN

INTRODUCTION: Systemic osteogenesis has been speculated to be involved in the pathogenesis of ossification of the posterior longitudinal ligament (OPLL). Our purpose was to compare the radiologic prevalence and severity of heterotopic ossification in foot tendons of Japanese patients with OPLL and to determine their association with systemic heterotopic ossification. MATERIALS AND METHODS: Clinical and radiographic data of 114 patients with OPLL were collected from 2020 to 2022. Control data were extracted from a medical database of 362 patients with ankle radiographs. Achilles and plantar tendon ossification were classified as grades 0-4, and the presence of osteophytes at five sites in the foot/ankle joint was assessed by radiography. Factors associated with the presence and severity of each ossification were evaluated by multivariable logistic regression and linear regression analysis. RESULTS: The prevalence of Achilles and plantar tendon ossification (grade ≥ 2) was 4.0-5.5 times higher in patients with OPLL (40-56%) than in the controls (10-11%). The presence of Achilles tendon ossification was associated with OPLL, age, and coexisting plantar tendon ossification, and was most strongly associated with OPLL (standardized regression coefficient, 0.79; 95% confidence interval, 1.34-2.38). The severity of Achilles and plantar tendon ossification was associated with the severity of ossification of the entire spinal ligament. CONCLUSIONS: The strong association of foot tendon ossification with OPLL suggests that patients with OPLL have a systemic osteogenesis background. These findings will provide a basis for exploring new treatment strategies for OPLL, including control of metabolic abnormalities.

2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673844

RESUMEN

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Asunto(s)
Marcadores Genéticos , Osteogénesis , Vitamina D , Vitamina D/análogos & derivados , Animales , Femenino , Ratas , Osteogénesis/efectos de los fármacos , Vitamina D/farmacología , Ovariectomía , Epífisis/efectos de los fármacos , Epífisis/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Remodelación Ósea/efectos de los fármacos , Ratas Sprague-Dawley , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos
3.
Bone ; 182: 117056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402920

RESUMEN

Osteoporotic vertebral fracture (OVF) is the most common type of osteoporotic fracture and is associated with immobility and mortality. Bone anabolic agents, such as abaloparatide (ABL), are usually administered to patients with OVF to prevent subsequent fractures. Although several studies have shown that bone anabolic agents promote healing of long bone fractures, there is little evidence of their healing effect on vertebral bone fractures. In the present study, we investigated the effect of ABL on vertebral bone defects using ovariectomized (OVX) rats with vertebral body drill-hole defects, an animal model of OVF. Eight-week-old female Sprague-Dawley rats were subjected to OVX, followed by the 32-36 days of bone depletion period, once-daily subcutaneous ABL was administered to OVX rats at a dose of 30 µg/kg for a maximum of 6 weeks from the day of the vertebral defect surgery. We found that ABL significantly increased bone mineral content and improved trabecular structural parameters at the vertebral defect site. Moreover, ABL significantly increased bone strength of the defected vertebrae. Bone histochemical analysis revealed formation of thick trabecular bone networks at the defect site after ABL administration, consistent with an improvement in trabecular structural parameters by ABL. ABL increased ALPase- and PHOSPHO1-positive osteoblastic cells and ALPase/PCNA double-positive cells, indicating enhanced preosteoblast proliferation as well as bone formation at the defect site. On the other hand, ABL did not affect the number of cathepsin K-positive osteoclasts per bone surface, suggesting that ABL did not promote excessive bone resorption. Our findings suggest that ABL is useful not only for preventing secondary vertebral fractures but also for promoting bone healing in OVF.


Asunto(s)
Anabolizantes , Fracturas Osteoporóticas , Proteína Relacionada con la Hormona Paratiroidea , Fracturas de la Columna Vertebral , Humanos , Ratas , Femenino , Animales , Osteogénesis , Ratas Sprague-Dawley , Anabolizantes/farmacología , Columna Vertebral , Fracturas Osteoporóticas/tratamiento farmacológico , Densidad Ósea , Ovariectomía
4.
iScience ; 27(2): 108871, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313054

RESUMEN

Estrogen receptor-binding fragment associated antigen 9 (EBAG9) exerts tumor-promoting effects by inducing immune escape. We focused on the physiological functions of EBAG9 by investigating the bone phenotypes of Ebag9-knockout mice. Female Ebag9-knockout mice have fragile bones with lower bone mineral density (BMD) compared with wild-type mice. Histomorphometric analyses demonstrated that lower BMD was mainly caused by decreased bone formation. Serum bone turnover markers showed that enhanced bone resorption also contributed to this phenotype. We revealed that EBAG9 promoted autophagy in both osteoblastic and osteoclastic lineages. In addition, the knockdown of Tm9sf1, a gene encoding a protein that functionally interacts with EBAG9, suppressed autophagy and osteoblastic differentiation of the murine preosteoblastic cell line MC3T3-E1. Finally, overexpression of TM9SF1 rescued the suppression of autophagy caused by the silencing of Ebag9. These results suggest that EBAG9 plays a physiological role in bone maintenance by promoting autophagy together with its interactor TM9SF1.

5.
Bone Res ; 12(1): 35, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849345

RESUMEN

DNAX-associated protein 12 kD size (DAP12) is a dominant immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptor that activates costimulatory signals essential for osteoclastogenesis. Although several DAP12-associated receptors (DARs) have been identified in osteoclasts, including triggering receptor expressed on myeloid cells 2 (TREM-2), C-type lectin member 5 A (CLEC5A), and sialic acid-binding Ig-like lectin (Siglec)-15, their precise role in the development of osteoclasts and bone remodeling remain poorly understood. In this study, mice deficient in Trem-2, Clec5a, Siglec-15 were generated. In addition, mice double deficient in these DAR genes and FcεRI gamma chain (FcR)γ, an alternative ITAM adaptor to DAP12, were generated. Bone mass analysis was conducted on all mice. Notably, Siglec-15 deficient mice and Siglec-15/FcRγ double deficient mice exhibited mild and severe osteopetrosis respectively. In contrast, other DAR deficient mice showed normal bone phenotype. Likewise, osteoclasts from Siglec-15 deficient mice failed to form an actin ring, suggesting that Siglec-15 promotes bone resorption principally by modulating the cytoskeletal organization of osteoclasts. Furthermore, biochemical analysis revealed that Sigelc-15 activates macrophage colony-stimulating factor (M-CSF)-induced Ras-associated protein-1 (RAP1)/Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway through formation of a complex with p130CAS and CrkII, leading to cytoskeletal remodeling of osteoclasts. Our data provide genetic and biochemical evidence that Siglec-15 facilitates M-CSF-induced cytoskeletal remodeling of the osteoclasts.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Osteoclastos , Transducción de Señal , Proteínas de Unión al GTP rap1 , Animales , Osteoclastos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética , Ratones , Citoesqueleto/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Inmunoglobulinas
6.
J Histochem Cytochem ; 72(5): 309-327, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38725403

RESUMEN

To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.


Asunto(s)
Hueso Cortical , Células Endoteliales , Hormona Paratiroidea , Animales , Humanos , Masculino , Ratones , Hueso Cortical/efectos de los fármacos , Hueso Cortical/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fémur/efectos de los fármacos , Fémur/irrigación sanguínea , Fémur/metabolismo , Inmunohistoquímica , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Hormona Paratiroidea/farmacología , Porosidad
7.
J Oral Biosci ; 66(3): 554-566, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942193

RESUMEN

OBJECTIVES: This study aimed to elucidate whether the administration of parathyroid hormone (PTH) results in remodeling- or modeling-based bone formation in different regions of the murine femora, and whether the PTH-driven bone formation would facilitate osteoblastic differentiation into osteocytes. METHODS: Six-week-old male C57BL/6J mice were employed to examine the distribution of alkaline phosphatase (ALP), PHOSPHO1, podoplanin, and calcein labeling in two distinct long bone regions: the metaphyseal trabeculae close to the chondro-osseous junction (COJ) and those distant from the COJ in three mouse groups, a control group receiving a vehicle (sham group) and groups receiving hPTH (1-34) twice a day (PTH BID group) or four times a day (PTH QID group) for two weeks. RESULTS: The sham group showed PHOSPHO1-reactive mature osteoblasts localized primarily at the COJ, whereas the PTH BID/QID groups exhibited extended lines of PHOSPHO1-reactive osteoblasts even in regions distant from the COJ. The PTH QID group displayed fragmented calcein labeling in trabeculae close to the COJ, whereas continuous labeling was observed in trabeculae distant from the COJ. Osteoblasts tended to express podoplanin and PHOSPHO1 independently in the close and distant regions of the sham group, while osteoblasts in the PTH-administered groups showed immunoreactivity of podoplanin and PHOSPHO1 together in the close and distant regions. CONCLUSIONS: Administration of PTH may accelerate remodeling-based bone formation in regions close to the COJ while predominantly inducing modeling-based bone formation in distant regions. PTH appeared to simultaneously facilitate osteoblastic bone mineralization and differentiation into osteocytes in both remodeling- and modeling-based bone formation.


Asunto(s)
Fosfatasa Alcalina , Fémur , Fluoresceínas , Ratones Endogámicos C57BL , Osteoblastos , Hormona Paratiroidea , Animales , Fosfatasa Alcalina/metabolismo , Ratones , Masculino , Fémur/efectos de los fármacos , Fémur/metabolismo , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Glicoproteínas de Membrana/metabolismo , Remodelación Ósea/efectos de los fármacos , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Monoéster Fosfórico Hidrolasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA