RESUMEN
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-binding protein that deaminates adenosine (A) to inosine (I). A-to-I editing alters post-transcriptional RNA processing, making ADAR1 a crucial regulator of gene expression. Consequently, Adar1 has been implicated in organogenesis. To determine the role of Adar1 in pancreatic development and homeostasis, we conditionally deleted Adar1 from the murine pancreas (Ptf1aCre/+; Adar1Fl/Fl). The resulting mice had stunted growth, likely due to malabsorption associated with exocrine pancreatic insufficiency. Analyses of pancreata revealed ductal cell expansion, heightened interferon-stimulated gene expression and an increased influx of immune cells. Concurrent deletion of Adar1 and Mavs, a signaling protein implicated in the innate immune pathway, rescued the degenerative phenotype and resulted in normal pancreatic development. Taken together, our work suggests that the primary function of Adar1 in the pancreas is to prevent aberrant activation of the Mavs-mediated innate immune pathway, thereby maintaining pancreatic homeostasis.
Asunto(s)
Páncreas Exocrino , Animales , Ratones , Páncreas Exocrino/metabolismo , Interferones/genética , Interferones/metabolismo , Fenotipo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismoRESUMEN
BACKGROUND: 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS: Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS: Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS: Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.
Asunto(s)
Fármacos Neuroprotectores , Ratones , Animales , Transcriptoma , Endocannabinoides/metabolismo , Ácidos Araquidónicos/metabolismo , Ratones Noqueados , Monoacilglicerol Lipasas , Inhibidores Enzimáticos/farmacologíaRESUMEN
Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Animales , Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Endocannabinoides/farmacología , Humanos , Ratones , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Enfermedades Neurodegenerativas/metabolismoRESUMEN
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aß formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Enfermedad de Alzheimer/patología , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Cognición , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Ratones , Ratones TransgénicosRESUMEN
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
RESUMEN
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Asunto(s)
Endocannabinoides , MicroARNs , Animales , Endocannabinoides/metabolismo , MicroARNs/genética , PPAR gamma/metabolismo , Astrocitos/metabolismoRESUMEN
Alzheimer's disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates ß-amyloid (Aß) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3ß and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.