Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Virol J ; 21(1): 9, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183101

RESUMEN

BACKGROUND: Human Papillomavirus (HPV) is a prevalent STI (Sexually Transmitted Infection) that is estimated almost all sexually active Patients at some stage of their life will be infected by the virus. Although most HPV infections resolve spontaneously, some can result in health complications, such as genital warts and several types of cancer. This study analyzed the variety of HPV genotypes in females and males among the infected population. METHODS: Samples were obtained from the oral, vaginal, and genital sites of study participants and the samples underwent DNA extraction and subsequently amplified using Real-Time PCR. The recognition of high-risk (HR) and low-risk (LR) HPV genotypes was carried out using the HPV REALQUALITY RQ-Multi diagnostic kit and demographic information was analyzed alongside statistical virological data. RESULTS: Out of 936 samples, 324 cases (34.6%) were found to be positive for HPV, while 612 cases (65.4%) were negative. Of our participants, 70 samples of males (27.5%) and 254 samples of females (37.3%) were HPV-positive. Common genotypes included 16, 6, 11, and 18, while genotypes 59, 56, 31, 45, and 52 were also detected. CONCLUSION: According to the findings of this study, a significant prevalence of HPV infection was seen in males and females, and the incidence of high-risk genotypes was more diverse in males. While the vaccine was effective in preventing some types of HPV, such as 16, 18, 6, and 11, there seems to be an increase in infections caused by other genotypes, and precautions should be taken to prevent future health problems.


Asunto(s)
Infecciones por Papillomavirus , Femenino , Masculino , Humanos , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/prevención & control , Prevalencia , Irán/epidemiología , Genotipo , Vagina
2.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
3.
Cell Commun Signal ; 21(1): 32, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759819

RESUMEN

Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Autofagia , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
4.
Pharmacol Res ; 190: 106732, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931542

RESUMEN

High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/ß-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Proteína HMGA2/metabolismo
5.
Pharmacol Res ; 187: 106582, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436707

RESUMEN

Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.


Asunto(s)
Autofagia , Epigénesis Genética , Neoplasias Gastrointestinales , MicroARNs , Humanos , Autofagia/genética , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , MicroARNs/genética , MicroARNs/metabolismo
6.
Pharmacol Res ; 187: 106568, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423787

RESUMEN

The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.


Asunto(s)
Carcinogénesis , MicroARNs , Neoplasias , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Relevancia Clínica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo
7.
Pharmacol Res ; 187: 106553, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400343

RESUMEN

Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
8.
Mol Cell Probes ; 71: 101930, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690573

RESUMEN

BACKGROUND: Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD: For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT: The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION: These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteómica , Biomarcadores , Biología Computacional
9.
Mol Cell Probes ; 70: 101916, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37355145

RESUMEN

INTRODUCTION: Oral squamous cell carcinoma (OSCC) is the most common cancers arising from the head and neck region. There is growing evidence that lncRNAs play an important role in OSCC progression. The study aims to investigate correlations between the expression levels of LncRNAs of PARROT, MYCNUT, DANCR, and KTN1-AS1 with clinicopathological characteristics and finding suitable biomarkers for OSCC. MATERIAL AND METHOD: Total lncRNAs related to cancers and HNSC trascriptomics data were downloaded from lncRNADisease v2.0 database and xenabrowser, respectively. Then, ACO was perfomed on shared of LncRNAs between two databases. Finally, some lncRNAs were proposed as potential biomarkers. Thirty biopsies samples from patients with the OSCC and 30 healthy subjects were collected by the surgery. Questionnaires including clinical and demographic data were filled for all cases. Using Real-time PCR, the expression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 lncRNAs were quantified. RESULT: According to the results,17 novel gene symbol was identified.All the candidate lncRNAs the expression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 were remarkably upregulated in OSCC tumors in comparison with control group (RQ: 10.00 (P < 0.0001), RQ: 2.920 (P < 0.0001), RQ: 1.623 (P = 0.002), and 4.467 (P < 0.0001), respectively). Also, we found significant associations between tumor lncRNAs expression of PARRPT and DANCER and tumor metastasis (P = 0.009, and P = 0.005, respectively). Additionally, lncRNA KTN1-AS1 expression level was significantly higher in the patients with tumor size more than 3 cm, in comparison with tumor less than 3 cm (P = 0.005). According ROC analysis, all these candidate lncRNAs can be a significant predictor for OSCC (AUC of PARROT lncRNA = 69.72%, AUC of MYCNUT = 98.22%, AUC of DANCR = 74.83%, and AUC of KTN1-AS1 = 99.22%). CONCLUSION: we found that overexpression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 lncRNAs were correlated with poor clinicopathological characteristics in patients with OSCC. Also, PARROT, MYCNUT, DANCR, and KTN1-AS1 are novel biomarker for the detection of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de Cabeza y Cuello/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas de la Membrana/genética
10.
Mol Biol Rep ; 50(6): 4841-4849, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37039998

RESUMEN

BACKGROUND: Celiac disease (CD) is a chronic immune-mediated enteropathy and a cytokine network is involved in its pathogenesis. Interleukin-2 (IL-2) has a key role in the adaptive immune pathogenesis of CD and has been reported to be one of the earliest cytokines to be elicited after gluten exposure by CD patients. This study aimed at investigating the expression level of IL-2 and functionally related genes SOCS1 and TBX21 in active and treated CD patients compared to controls. METHODS AND RESULTS: Peripheral blood (PB) samples were collected from 40 active CD (ACD), 100 treated CD, and 100 healthy subjects. RNA was extracted, cDNA was synthesized and mRNA expression levels of the desired genes were investigated by Real-time PCR. The gene-gene interaction network was also constructed by GeneMANIA. Our results showed a higher PB mRNA expression of IL-2 in ACD patients compared to controls (p = 0.001) and treated CD patients (p˂0.0001). The mRNA expression level of TBX21 was also significantly up-regulated in ACD patients compared to controls (P = 0.03). SOCS1 mRNA level did not differ between active and treated CD patients and controls (p˃0.05) but showed a significant correlation with the patient's aphthous stomatitis symptom (r = 0.37, p = 0.01). ROC curve analysis suggested that the use of IL-2 levels can reach a high specificity and sensitivity in discriminating active CD patients. CONCLUSIONS: The PB level of IL-2 has the potential to be introduced as a diagnostic biomarker for CD. Larger cohort studies, including pediatric patients, are needed to achieve more insights in this regard.


Asunto(s)
Enfermedad Celíaca , Niño , Humanos , Células Sanguíneas , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/genética , Citocinas/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , ARN Mensajero/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas
11.
Mol Biol Rep ; 50(5): 4505-4515, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37024747

RESUMEN

BACKGROUND: Long intergenic non-coding RNA 460 (LINC00460) as a potential oncogene and Annexin A2 (ANXA2) as a promoter in different cancer progression processes was considered. A significant relationship between the LINC00460 and ANXA2 has been recently discovered in colorectal cancer (CRC). Therefore, defining molecular biomarkers accompanied by lesion histopathologic features can be a suggestive prognostic biomarker in precancerous polyps. This study aimed to investigate the elusive expression pattern of ANXA2 and LINC00460 in polyps. MATERIALS AND METHODS: The construction of the co-expression and correlation network of LINC00460 and ANXA2 was plotted. LINC00460 and ANXA2 expression in 40 colon polyps was quantified by reverse transcription-real-time polymerase chain reaction. The receiver operating characteristic (ROC) curve was designed for distinguishing the high-risk precancerous lesion from the low-risk. Further, bioinformatics analysis was applied to find the shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, and the associated pathways. RESULTS: ANXA2 has a high co-expression rank with LINC00460 in the lncHUB database. Overexpression of ANXA2 and LINC00460 was distinguished in advanced adenoma polyps compared to the adjacent normal samples. The estimated AUC for ANXA2 and LINC00460 was 0.88 - 0.85 with 93%-90% sensitivity and 81%-70% specificity. In addition, eight MITs were shared between ANXA2 and LINC00460. Enrichment analysis detected several GO terms and pathways, including HIF-1α associated with cancer development. CONCLUSION: In conclusion, the expression of the ANXA2 and LINC00460 were significantly elevated in pre-cancerous polyps, especially in high-risk adenomas. Collectively, ANXA2 and LINC00460 may be administered as potential prognostic biomarkers in patients with a precancerous large intestine lesion as an alarming issue.


Asunto(s)
Anexina A2 , Pólipos del Colon , MicroARNs , Lesiones Precancerosas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Pólipos del Colon/genética , Pronóstico , MicroARNs/genética , Lesiones Precancerosas/genética
12.
Environ Res ; 231(Pt 1): 116115, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178752

RESUMEN

Exosomes are small extracellular vesicles that can be derived from human cells such as mesenchymal stem cells (MSCs). The size of exosomes is at nano-scale range and owing to their biocompatibility and other characteristics, they have been promising candidates for delivery of bioactive compounds and genetic materials in disease therapy, especially cancer therapy. Gastric cancer (GC) is a leading cause of death among patients and this malignant disease affects gastrointestinal tract that its invasiveness and abnormal migration mediate poor prognosis of patients. Metastasis is an increasing challenge in GC and microRNAs (miRNAs) are potential regulators of metastasis and related molecular pathways, especially epithelial-to-mesenchymal transition (EMT). In the present study, our aim was to explore role of exosomes in miR-200a delivery for suppressing EMT-mediated GC metastasis. Exosomes were isolated from MSCs via size exclusion chromatography. The synthetic miR-200a mimics were transfected into exosomes via electroporation. AGS cell line exposed to TGF-ß for EMT induction and then, these cells cultured with miR-200a-loaded exosomes. The transwell assays performed to evaluate GC migration and expression levels of ZEB1, Snail1 and vimentin measured. Exosomes demonstrated loading efficiency of 5.92 ± 4.6%. The TGF-ß treatment transformed AGS cells into fibroblast-like cells expressing two stemness markers, CD44 (45.28%) and CD133 (50.79%) and stimulated EMT. Exosomes induced a 14.89-fold increase in miR-200a expression in AGS cells. Mechanistically, miR-200a enhances E-cadherin levels (P < 0.01), while it decreases expression levels of ß-catenin (P < 0.05), vimentin (P < 0.01), ZEB1 (P < 0.0001) and Snail1 (P < 0.01), leading to EMT inhibition in GC cells. This pre-clinical experiment introduces a new strategy for miR-200a delivery that is of importance for preventing migration and invasion of GC cells.


Asunto(s)
Exosomas , MicroARNs , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta , Exosomas/metabolismo , Vimentina , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
13.
Environ Res ; 239(Pt 1): 117117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805185

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES: The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS: RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS: RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION: Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Inteligencia Artificial , Reposicionamiento de Medicamentos , Algoritmos , Biomarcadores , Nanopartículas/uso terapéutico , Factores de Crecimiento de Fibroblastos/genética
14.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716390

RESUMEN

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Medicina de Precisión , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Inflamación
15.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
16.
Environ Res ; 233: 116458, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348629

RESUMEN

Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Transformación Celular Neoplásica , Apoptosis , Citocinas/metabolismo , Proliferación Celular , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
17.
Environ Res ; 228: 115912, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068723

RESUMEN

Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.


Asunto(s)
Quitosano , Diabetes Mellitus , Nanopartículas , Nanoestructuras , Humanos , Quitosano/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/química , Polímeros/química , Insulina , Diabetes Mellitus/tratamiento farmacológico
18.
Cell Mol Life Sci ; 79(11): 539, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36194371

RESUMEN

Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Estilbenos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisplatino/farmacología , Docetaxel , Doxorrubicina/farmacología , Femenino , Humanos , Paclitaxel , Polifenoles/farmacología , Resveratrol/farmacología , Resveratrol/uso terapéutico , Estilbenos/farmacología , Estilbenos/uso terapéutico , Microambiente Tumoral , Agua
19.
Cell Mol Biol Lett ; 28(1): 33, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085753

RESUMEN

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Humanos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo
20.
Gene Ther ; 29(12): 680-690, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34108628

RESUMEN

Nowadays, nano-compartments are considered as an effective drug delivery system (DDS) for cancer therapy. Targeted delivery of therapeutic agents is an advantageous approach by which cancer cells can be targeted without harming normal cells, and eliminates the negative effects of conventional therapies such as chemotherapy. In this research, a novel zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) has been constructed and applied as efficient delivery of LNA (locked nucleic acid)-antisense miR-224 to colon cancer cell lines. LNA-antisense miR-224 as a therapeutic sequence was able to considerably block highly expressed miR-224 and downregulated cancer cell growth. The prepared nano-complex was characterized by analytical devices such as FT-IR, UV-Vis spectrophotometry, DLS, TEM, and XRD. The size range of NMOF-CS-FA-LNA-antisense miR-224 (MCFL224) nano-complex was obtained nearly at 200 nm. The entrapment efficiency of LNA-antisense miR-224 was calculated 72 ± 5% and a significant release profile of LNA-antisense miR-224 was observed at first 6 h (about 50%). Then, in vitro assays were implemented on HCT116 (folic acid receptor-positive colon cancer cell line) and CRL1831 (normal colon cell line) to evaluate the therapeutic efficiency of the MCFL224 nano-complex. In these investigations, decreased cell viability (14.22 ± 0.3% after 72 h treatment), increased apoptotic and autophagy-related genes expression level (BECLIN1: 34-folds, BAX: 36-folds, mTORC1: 10-folds, and Caspase-9: 9-folds more than control), higher cell cycle arrest in sub-G1 phase (19.53% of cells in sub-G1 phase), and more apoptosis analyses (late apoptosis: 67.7%) were evaluated in colon cancer cells treated with MCFL224 nano-complex. Results remarkably indicate the inhibited growth of colon cancer cells and induced cell apoptosis which suggests MCFL224 as a promising nanocomposite for colon cancer therapy.


Asunto(s)
Quitosano , Neoplasias del Colon , Estructuras Metalorgánicas , MicroARNs , Nanocompuestos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Ácido Fólico , MicroARNs/genética , Zinc , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA