Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 167, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690638

RESUMEN

Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Transcripción/metabolismo , Necroptosis , Apoptosis , Hepatocitos/metabolismo , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Transcripción Activador 3/metabolismo
2.
J Diabetes Investig ; 12(1): 35-47, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32515547

RESUMEN

AIMS/INTRODUCTION: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) lowers blood glucose and causes a whole-body energy deficit by boosting renal glucose excretion, thus affecting glucose and energy metabolism. This energy deficit not only decreases bodyweight, but also increases food intake. This food intake increase offsets the SGLT2i-induced bodyweight decrease, but the effect of the food intake increase on the SGLT2i regulation of glucose metabolism remains unclear. MATERIALS AND METHODS: We administered SGLT2i (luseogliflozin) for 4 weeks to hepatic gluconeogenic enzyme gene G6pc reporter mice with/without obesity, which were either fed freely or under a 3-hourly dietary regimen. The effect of feeding condition on the gluconeogenic response to SGLT2i was evaluated by plasma Gaussia luciferase activity, an index of the hepatic gluconeogenic response, in G6pc reporter mice. Energy expenditure was measured by indirect calorimetry. RESULTS: In the lean mice under controlled feeding, SGLT2i decreased bodyweight and plasma glucose, and increased the hepatic gluconeogenic response while decreasing blood insulin. SGLT2i also increased oxygen consumption under controlled feeding. However, free feeding negated all of these effects of SGLT2i. In the obese mice, SGLT2i decreased bodyweight, blood glucose and plasma insulin, ameliorated the upregulated hepatic gluconeogenic response, and increased oxygen consumption under controlled feeding. Under free feeding, although blood glucose was decreased and plasma insulin tended to decrease, the effects of SGLT2i - decreased bodyweight, alleviation of the hepatic gluconeogenic response and increased oxygen consumption - were absent. CONCLUSIONS: Food intake management is crucial for SGLT2i to affect glucose and energy metabolism during type 2 diabetes treatment.


Asunto(s)
Dieta , Metabolismo Energético , Gluconeogénesis , Glucosa/biosíntesis , Obesidad/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Delgadez/tratamiento farmacológico , Animales , Diabetes Mellitus Tipo 2/prevención & control , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Obesidad/metabolismo , Obesidad/patología , Delgadez/metabolismo , Delgadez/patología
3.
Endocrinology ; 160(12): 2811-2824, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31517956

RESUMEN

Sodium-glucose cotransporter 2 inhibitor (SGLT2i) consistently reduces blood glucose levels in type 2 diabetes mellitus but increases hepatic gluconeogenic gene expression and glucose production, offsetting its glucose-lowering effect. This study aimed to elucidate the effect of SGLT2i on hepatic gluconeogenic response and its mechanism in both insulin-sensitive and insulin-resistant states. A hepatic mouse model was generated to show liver-specific expression of Gaussia luciferase (GLuc) driven by the gluconeogenic enzyme gene G6pc promoter. Hepatic gluconeogenic response was evaluated by measuring plasma GLuc activity. SGLT2i was given to lean and obese mice in single gavage administration or 4-week dietary administration with controlled feeding every 3 hours. In lean mice, single-dose SGLT2i increased plasma GLuc activity from 2 hours after administration, decreasing blood glucose and plasma insulin from 1 to 2 hours after administration. In obese mice, which had higher plasma GLuc activity than lean ones, SGLT2i did not further increase GLuc activity despite decreased blood glucose and plasma insulin. Hepatic Akt and GSK3ß phosphorylation was attenuated by single-dose SGLT2i in lean mice in accordance with the plasma insulin decrease, but not in obese mice. Long-term SGLT2i administration, which increased plasma GLuc activity in lean mice, decreased it in obese mice from 3 weeks after initiation, with increased hepatic Akt and GSK3ß phosphorylation. In conclusion, single SGLT2i administration increases hepatic gluconeogenic response in lean insulin-sensitive mice, but not in obese insulin-resistant mice. Long-term SGLT2i administration relieves obesity-induced upregulation of the hepatic gluconeogenic response by restoring impeded hepatic insulin signaling in obese insulin-resistant mice.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Resistencia a la Insulina , Obesidad/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Animales , Dieta Alta en Grasa , Glucosa-6-Fosfatasa/genética , Insulina/sangre , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico
4.
Endocrinology ; 160(12): 2837-2848, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31555819

RESUMEN

Extracellular signal-regulated kinase 5 (Erk5), a member of the MAPK family, is specifically phosphorylated and activated by MAPK/Erk kinase-5. Although it has been implicated in odor discrimination and long-term memory via its expression in the central nervous system, little is known regarding the physiological importance of neuronal Erk5 in body weight and energy homeostasis. In the current study, systemic insulin injection significantly induced phosphorylation of Erk5 in the hypothalamus. Moreover, Erk5 deficiency in leptin receptor (LepR)‒expressing neurons led to an obesity phenotype, with increased white adipose tissue mass due to increased adipocyte size, only in female mice fed a normal chow diet. Furthermore, Erk5 deficiency in LepR-expressing neurons showed impaired glucose tolerance along with decreased physical activity, food intake, and energy expenditure. These results suggest that Erk5 controls body weight and systemic energy homeostasis probably via its expression in hypothalamic neurons in female mice, thereby providing a target for metabolic diseases such as obesity and type 2 diabetes mellitus.


Asunto(s)
Peso Corporal , Metabolismo Energético , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Receptores de Leptina/metabolismo , Tejido Adiposo Blanco , Animales , Glucemia , Ingestión de Alimentos , Femenino , Homeostasis , Hipotálamo/metabolismo , Insulina , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA