Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dev Biol ; 509: 59-69, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373693

RESUMEN

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transducción de Señal/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación/genética , Tamaño Corporal/genética
2.
Cancer Sci ; 114(1): 25-33, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36285487

RESUMEN

Phosphatase of regenerating liver (PRL) is a family of protein tyrosine phosphatases (PTPs) that are anchored to the plasma membrane by prenylation. They are frequently overexpressed in various types of malignant cancers and their roles in cancer progression have received considerable attention. Mutational analyses of PRLs have shown that their intrinsic phosphatase activity is dispensable for tumor formation induced by PRL overexpression in a lung metastasis model using melanoma cells. Instead, PRLs directly bind to cyclin M (CNNM) Mg2+ exporters in the plasma membrane and potently inhibit their Mg2+ export activity, resulting in an increase in intracellular Mg2+ levels. Experiments using mammalian culture cells, mice, and C. elegans have collectively revealed that dysregulation of Mg2+ levels severely affects ATP and reactive oxygen species (ROS) levels as well as the function of Ca2+ -permeable channels. Moreover, PRL overexpression altered the optimal pH for cell proliferation from normal 7.5 to acidic 6.5, which is typically observed in malignant tumors. Here, we review the phosphatase-independent biological functions of PRLs, focusing on their interactions with CNNM Mg2+ exporters in cancer progression.


Asunto(s)
Caenorhabditis elegans , Neoplasias Pulmonares , Animales , Ratones , Caenorhabditis elegans/metabolismo , Proteínas Tirosina Fosfatasas/genética , Membrana Celular/metabolismo , Hígado/metabolismo , Mamíferos/metabolismo
3.
PLoS Genet ; 12(8): e1006276, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27564576

RESUMEN

Mg2+ serves as an essential cofactor for numerous enzymes and its levels are tightly regulated by various Mg2+ transporters. Here, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding cyclin M (CNNM) Mg2+ transporters. We isolated inactivating mutants for each of the five Caenorhabditis elegans cnnm family genes, cnnm-1 through cnnm-5. cnnm-1; cnnm-3 double mutant worms showed various phenotypes, among which the sterile phenotype was rescued by supplementing the media with Mg2+. This sterility was caused by a gonadogenesis defect with severely attenuated proliferation of germ cells. Using this gonadogenesis defect as an indicator, we performed genome-wide RNAi screening, to search for genes associated with this phenotype. The results revealed that RNAi-mediated inactivation of several genes restores gonad elongation, including aak-2, which encodes the catalytic subunit of AMP-activated protein kinase (AMPK). We then generated triple mutant worms for cnnm-1; cnnm-3; aak-2 and confirmed that the aak-2 mutation also suppressed the defective gonadal elongation in cnnm-1; cnnm-3 mutant worms. AMPK is activated under low-energy conditions and plays a central role in regulating cellular metabolism to adapt to the energy status of cells. Thus, we provide genetic evidence linking Mg2+ homeostasis to energy metabolism via AMPK.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Catión/genética , Ciclinas/genética , Longevidad/genética , Complejos Multiproteicos/genética , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Quinasas Activadas por AMP , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclinas/biosíntesis , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Magnesio/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Familia de Multigenes/genética , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/genética
4.
J Am Soc Nephrol ; 27(7): 1925-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26609120

RESUMEN

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Asunto(s)
Ácidos Indolacéticos/farmacología , Túbulos Renales/citología , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fenilbutiratos/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Biochem Biophys Res Commun ; 459(1): 66-70, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25721669

RESUMEN

We previously generated mito-mice-tRNA(Lys7731) as a model for primary prevention of mitochondrial diseases. These mice harbour a G7731A mtDNA mutation in the tRNA(Lys) gene, but express only muscle weakness and short body length by four months. Here, we examined the effects of their aging on metabolic and histologic features. Unlike young mito-mice-tRNA(Lys7731), aged mito-mice-tRNA(Lys7731) developed muscle atrophy, renal failures, and various metabolic abnormalities, such as lactic acidosis and anemia, characteristic of patients with mitochondrial diseases. These observations provide convincing evidence that the respiration defects induced by high G7731A mtDNA levels cause these late-onset disorders that are relevant to mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales/genética , Mutación , ARN de Transferencia de Lisina/genética , Edad de Inicio , Envejecimiento/genética , Animales , ADN Mitocondrial , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos , Ratones Mutantes , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/mortalidad , Enfermedades Mitocondriales/patología
6.
Proc Natl Acad Sci U S A ; 109(26): 10528-33, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689997

RESUMEN

It has been hypothesized that respiration defects caused by accumulation of pathogenic mitochondrial DNA (mtDNA) mutations and the resultant overproduction of reactive oxygen species (ROS) or lactates are responsible for aging and age-associated disorders, including diabetes and tumor development. However, there is no direct evidence to prove the involvement of mtDNA mutations in these processes, because it is difficult to exclude the possible involvement of nuclear DNA mutations. Our previous studies resolved this issue by using an mtDNA exchange technology and showed that a G13997A mtDNA mutation found in mouse tumor cells induces metastasis via ROS overproduction. Here, using transmitochondrial mice (mito-mice), which we had generated previously by introducing G13997A mtDNA from mouse tumor cells into mouse embryonic stem cells, we provide convincing evidence supporting part of the abovementioned hypothesis by showing that G13997A mtDNA regulates diabetes development, lymphoma formation, and metastasis--but not aging--in this model.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Experimental/genética , Linfoma/genética , Enfermedades Mitocondriales/genética , Mutación , Células 3T3 , Animales , Secuencia de Bases , Línea Celular Transformada , Cartilla de ADN , Ratones , Fenotipo , Reacción en Cadena de la Polimerasa , Especies Reactivas de Oxígeno/metabolismo
7.
Sci Rep ; 11(1): 3980, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597597

RESUMEN

Adenomatous polyposis coli (APC) is a tumor-suppressing protein whose inactivation triggers the formation of colorectal polyps. Numerous studies using cell lines or genetically engineered mice have revealed its role in suppressing Wnt/ß-catenin signaling pathway and regulating cell proliferation and differentiation. Here, we performed genetic analyses of APC using a three-dimensional organoid culture of mouse colon epithelia, which enables the detailed examination of epithelial properties. Analyses of Apc-knockout colon organoids not only confirmed the importance of APC in suppressing Wnt/ß-catenin signaling and regulating cell differentiation, but also revealed several novel features: a significant decrease in proliferating speed and an increase in cross-sectional area of cells. Moreover, we found a significant number of lysozyme-positive Paneth-like cells, which were never observed in wild-type colon tissues or organoids, but have been reported to emerge in colon cancers. Therefore, APC autonomously suppresses ectopic differentiation into lysozyme-positive cells, specifically in the colon epithelia. Colon organoids would be an ideal material to investigate the molecular mechanism and biological importance of the ectopic differentiation associated with cancer development.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Células Epiteliales/metabolismo , Organoides/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Colon/citología , Neoplasias del Colon/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Vía de Señalización Wnt
8.
Antioxid Redox Signal ; 33(1): 20-34, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148064

RESUMEN

Aims: Mg2+ is fundamental for life, and its shortage severely impairs vital functions. However, whether excessive Mg2+ has beneficial or adverse effects has remained unknown. To clarify this issue, we analyzed the effect of suppressing the functions of Cyclin M (CNNM) Mg2+ efflux transporters in various experimental systems. Results: Investigation of short-lived Caenorhabditis elegans worms mutated for CNNM genes revealed reactive oxygen species (ROS) augmentation in intestinal cells, coincidently with high levels of Mg2+. Knockdown of gtl-1, encoding Mg2+-incorporating channel into intestinal cells, reduced ROS levels and restored life span, confirming the causative role of excessive Mg2+. Also, inactivation of orthologous CNNM in human cultured cells and mice by RNA interference, expression of CNNM-inhibiting protein, phosphatase of regenerating liver 3, or gene knockout resulted in ROS overproduction. Moreover, biochemical analyses revealed that excessive Mg2+ stimulates adenosine triphosphate overproduction and accelerates mitochondrial electron transport, whose suppression shut down ROS generation. Innovation and Conclusion: These results provide definitive evidence that excessive Mg2+ drives overproduction of ROS by affecting energy metabolism, implying the crucial importance of the tight regulation of intracellular Mg2+ levels.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Homeostasis , Intestinos/fisiología , Magnesio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/fisiología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Interferencia de ARN
9.
Dev Cell ; 55(4): 387-397.e8, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32918875

RESUMEN

Extracellular pH is usually maintained around 7.4 in multicellular organisms, and cells are optimized to proliferate under this condition. Here, we find cells can adapt to a more acidic pH of 6.5 and become addicted to this acidic microenvironment by expressing phosphatase of regenerating liver (PRL), a driver of cancer malignancy. Genome-scale CRISPR-Cas9 knockout screening and subsequent analyses revealed that PRL promotes H+ extrusion and acid addiction by stimulating lysosomal exocytosis. Further experiments using cultured cells and Caenorhabditis elegans clarified the molecular link between PRL and lysosomal exocytosis across species, involving activation of lysosomal Ca2+ channel TRPML by ROS. Indeed, disruption of TRPML in cancer cells abolished PRL-stimulated lysosomal exocytosis, acid addiction, and metastasis. Thus, PRL is the molecular switch turning cells addicted to an acidic condition, which should benefit cancer cells to thrive in an acidic tumor microenvironment.


Asunto(s)
Ácidos/metabolismo , Exocitosis , Proteínas Inmediatas-Precoces/metabolismo , Lisosomas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Perros , Evolución Molecular , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Metástasis de la Neoplasia
10.
FEBS Lett ; 582(23-24): 3525-30, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18805414

RESUMEN

We addressed the issue of whether enhanced glycolysis caused by mtDNA mutations independently induces metastasis in tumor cells using mtDNA transfer technology. The resultant trans-mitochondrial cybrids sharing the same nuclear background of poorly metastatic carcinoma P29 cells, P29mtA11 and P29mtDelta cybrids, possessed mtDNA with a G13997A mutation from highly metastatic carcinoma A11 cells and mtDNA with a 4696bp deletion mutation, respectively. The P29mtDelta cybrids expressed enhanced glycolysis, but did not express ROS overproduction and high metastatic potential, whereas P29mtA11 cybrids showed enhanced glycolysis, ROS overproduction, and high metastatic potential. Thus, enhanced glycolysis alone does not induce metastasis in the cybrids.


Asunto(s)
ADN Mitocondrial/genética , Glucólisis/genética , Mitocondrias/metabolismo , Metástasis de la Neoplasia/genética , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Respiración de la Célula/genética , Genotipo , Ratones , Mitocondrias/genética , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transfección
11.
Sci Rep ; 8(1): 425, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323231

RESUMEN

Accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for human aging and age-associated mitochondrial respiration defects. However, our previous findings suggested an alternative hypothesis of human aging-that epigenetic changes but not mutations regulate age-associated mitochondrial respiration defects, and that epigenetic downregulation of nuclear-coded genes responsible for mitochondrial translation [e.g., glycine C-acetyltransferase (GCAT), serine hydroxymethyltransferase 2 (SHMT2)] is related to age-associated respiration defects. To examine our hypothesis, here we generated mice deficient in Gcat or Shmt2 and investigated whether they have respiration defects and premature aging phenotypes. Gcat-deficient mice showed no macroscopic abnormalities including premature aging phenotypes for up to 9 months after birth. In contrast, Shmt2-deficient mice showed embryonic lethality after 13.5 days post coitum (dpc), and fibroblasts obtained from 12.5-dpc Shmt2-deficient embryos had respiration defects and retardation of cell growth. Because Shmt2 substantially controls production of N-formylmethionine-tRNA (fMet-tRNA) in mitochondria, its suppression would reduce mitochondrial translation, resulting in expression of the respiration defects in fibroblasts from Shmt2-deficient embryos. These findings support our hypothesis that age-associated respiration defects in fibroblasts of elderly humans are caused not by mtDNA mutations but by epigenetic regulation of nuclear genes including SHMT2.


Asunto(s)
Envejecimiento Prematuro/genética , Epigénesis Genética , Genes Letales , Glicina Hidroximetiltransferasa/genética , Mitocondrias/fisiología , Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Animales , Células Cultivadas , Desarrollo Embrionario , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Glicina Hidroximetiltransferasa/deficiencia , Humanos , Masculino , Ratones , Mitocondrias/genética , Modelos Animales , N-Formilmetionina/metabolismo , ARN de Transferencia/genética
12.
Curr Opin Genet Dev ; 38: 63-67, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27078865

RESUMEN

The mitochondria theory of aging proposes that accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations, and the resultant respiration defects, are responsible not only for mitochondrial diseases but also for aging and age-associated disorders, including tumor development. This theory is partly supported by results obtained from our transmitochondrial mice (mito-mice), which harbour mtDNA with mutations that are orthologous to those found in patients with mitochondrial diseases: mito-mice express disease phenotypes only when they express respiration defects caused by accumulation of mutated mtDNA. With regard to tumor development, specific mtDNA mutations that induce reactive oxygen species (ROS) enhance malignant transformation of lung carcinoma cells to cells with high metastatic potential. However, age-associated respiration defects in elderly human fibroblasts are due not to mtDNA mutations but to epigenetic regulation of nuclear-coded genes, as indicated by the fact that normal respiratory function is restored by reprogramming of elderly fibroblasts.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Neoplasias/genética , Envejecimiento/genética , Envejecimiento/patología , Epigénesis Genética , Humanos , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Mutación/genética , Metástasis de la Neoplasia , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo
13.
PLoS One ; 10(3): e0118561, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738506

RESUMEN

We previously found that mouse mitochondrial DNA (mtDNA) with a G13997A mutation (G13997A mtDNA) controls not only the transformation of cultured lung carcinoma cells from poorly metastatic into highly metastatic cells, but also the transformation of lymphocytes into lymphomas in living C57BL/6 (B6) mice. Because the nuclear genetic background of the B6 strain makes the strain prone to develop lymphomas, here we examined whether G13997A mtDNA independently induces lymphoma development even in mice with the nuclear genetic background of the A/J strain, which is not prone to develop lymphomas. Our results showed that the B6 nuclear genetic background is required for frequent lymphoma development in mice with G13997A mtDNA. Moreover, G13997A mtDNA in mice did not enhance the malignant transformation of lung adenomas into adenocarcinomas or that of hepatocellular carcinomas from poorly metastatic into highly metastatic carcinomas. Therefore, G13997A mtDNA enhances the frequency of lymphoma development under the abnormalities in the B6 nuclear genome, and does not independently control tumor development and tumor progression.


Asunto(s)
Carcinogénesis/genética , Núcleo Celular/genética , ADN Mitocondrial/genética , Antecedentes Genéticos , Linfoma/genética , Linfoma/patología , Mitocondrias/genética , Proteínas Quinasas Activadas por AMP , Adenoma/inducido químicamente , Adenoma/genética , Adenoma/patología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Genómica , Endogamia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Metástasis de la Neoplasia , Proteínas Serina-Treonina Quinasas/deficiencia , Uretano/efectos adversos
14.
Sci Rep ; 5: 10434, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26000717

RESUMEN

Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes.


Asunto(s)
Aciltransferasas/genética , Envejecimiento , Epigénesis Genética , Glicina Hidroximetiltransferasa/genética , Lipasa/genética , Mitocondrias/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Anciano de 80 o más Años , Diferenciación Celular , Línea Celular , Reprogramación Celular , Niño , ADN Mitocondrial/análisis , Fibroblastos/citología , Fibroblastos/metabolismo , Dosificación de Gen , Glicina/biosíntesis , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
15.
Exp Anim ; 63(4): 459-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25048265

RESUMEN

Because of the difficulty to exclude possible involvement of nuclear DNA mutations, it has been a controversial issue whether pathogenic mutations in mitochondrial DNA (mtDNA) and the resultant respiration defects are involved in tumor development. To address this issue, our previous study generated transmitochondrial mice (mito-mice-ND6(13997)), which possess the nuclear and mtDNA backgrounds derived from C57BL/6J (B6) strain mice except that they carry B6 mtDNA with a G13997A mutation in the mt-Nd6 gene. Because aged mito-mice-ND6(13997) simultaneously showed overproduction of reactive oxygen species (ROS) in bone marrow cells and high frequency of lymphoma development, current study examined the effects of administrating a ROS scavenger on the frequency of lymphoma development. We used N-acetylcysteine (NAC) as a ROS scavenger, and showed that NAC administration prevented lymphoma development. Moreover, its administration induced longevity in mito-mice-ND6(13997). The gene expression profiles in bone marrow cells indicated the upregulation of the Fasl gene, which can be suppressed by NAC administration. Given that natural-killer (NK) cells mediate the apoptosis of various tumor cells via enhanced expression of genes encoding apoptotic ligands including Fasl gene, its overexpression would reflect the frequent lymphoma development in bone marrow cells. These observations suggest that continuous administration of an antioxidant would be an effective therapeutics to prevent lymphoma development enhanced by ROS overproduction.


Asunto(s)
Acetilcisteína/administración & dosificación , Antioxidantes/administración & dosificación , ADN Mitocondrial/genética , Depuradores de Radicales Libres/administración & dosificación , Linfoma/etiología , Linfoma/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Apoptosis , Células de la Médula Ósea/metabolismo , Fosfatos de Dinucleósidos , Proteína Ligando Fas/genética , Femenino , Depuradores de Radicales Libres/farmacología , Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Asesinas Naturales/fisiología , Linfoma/genética , Linfoma/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación
16.
Exp Anim ; 63(1): 21-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24521860

RESUMEN

Previous reports have shown that transmitochondrial mito-mice with nuclear DNA from Mus musculus and mtDNA from M. spretus do not express respiration defects, whereas those with mtDNA from Rattus norvegicus cannot be generated from ES cybrids with mtDNA from R. norvegicus due to inducing significant respiration defects and resultant losing multipotency. Here, we isolated transmitochondrial cybrids with mtDNA from various rodent species classified between M. spretus and R. norvegicus, and compared the O2 consumption rates. The results showed a strong negative correlation between phylogenetic distance and reduction of O2 consumption rates, which would be due to the coevolution of nuclear and mitochondrial genomes and the resultant incompatibility between the nuclear genome from M. musculus and the mitochondrial genome from the other rodent species. These observations suggested that M. caroli was an appropriate mtDNA donor to generate transmitochondrial mito-mice with nuclear DNA from M. musculus. Then, we generated ES cybrids with M. caroli mtDNA, and found that these ES cybrids expressed respiration defects without losing multipotency and can be used to generate transmitochondrial mito-mice expressing mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/genética , Transferencia de Gen Horizontal/genética , Ratones/genética , Enfermedades Mitocondriales/genética , Mutación , Ratas/genética , Animales , Células Cultivadas , ADN Mitocondrial/metabolismo , Células Madre Embrionarias , Evolución Molecular , Ratones Endogámicos BALB C , Ratones Desnudos , Consumo de Oxígeno , Filogenia
17.
PLoS One ; 8(2): e55789, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418460

RESUMEN

Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , Linfoma de Células B/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Envejecimiento/metabolismo , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Alopecia/genética , Alopecia/metabolismo , Animales , Células Cultivadas , ADN Mitocondrial/metabolismo , Cifosis/genética , Cifosis/metabolismo , Linfoma de Células B/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Mutación , Consumo de Oxígeno , Fenotipo
18.
FEBS Lett ; 584(18): 3943-8, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20674568

RESUMEN

To investigate the effects of respiration defects on the disease phenotypes, we generated trans-mitochondrial mice (mito-mice) by introducing a mutated G13997A mtDNA, which specifically induces respiratory complex I defects and metastatic potentials in mouse tumor cells. First, we obtained ES cells and chimeric mice containing the G13997A mtDNA, and then we generated mito-mice carrying the G13997A mtDNA via its female germ line transmission. The three-month-old mito-mice showed complex I defects and lactate overproduction, but showed no other phenotypes related to mitochondrial diseases or tumor formation, suggesting that aging or additional nuclear abnormalities are required for expression of other phenotypes.


Asunto(s)
Carcinoma/genética , ADN Mitocondrial/genética , ADN de Neoplasias/genética , Neoplasias Pulmonares/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Factores de Edad , Envejecimiento/genética , Animales , Carcinoma/patología , Quimera , Células Madre Embrionarias , Femenino , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Transgénicos , Enfermedades Mitocondriales/patología , Metástasis de la Neoplasia , Atrofia Óptica Hereditaria de Leber/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA