Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microsc Microanal ; : 1-9, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34610853

RESUMEN

Cyprinid fishes have one of the simplest types of gastrointestinal tract among vertebrates. Those fish species do not possess a true stomach that is replaced by a simple dilatation at the anterior part of the intestine called the intestinal bulb. Twenty adult specimens of grass carp were used in the present study to identify the cellular components as well as the immunohistochemical and surface architectural characteristics of the intestinal bulb. The mucosa of the intestinal bulb shows numerous, deep longitudinal folds arranged in zigzagging-like patterns. The epithelium is composed mainly of absorptive columnar cells covered by microvilli and mucous goblet cells. Spindle-shaped enteroendocrine cells and some migratory immune cells such as intraepithelial lymphocytes and rodlet cells could be identified between the absorptive cells. The epithelium also contains many secretory granules and large numbers of vacuoles containing digestive enzymes mostly in the basal part. The immunohistochemistry revealed that CD20-positive B-lymphocytes are immunolocalized mainly in the connective tissue core lamina propria of the mucosal folds. However, CD3-immunopositive T-lymphocytes are highly concentrated in the lamina propria. In addition, intraepithelial T-lymphocytes expressed immunopositivity to CD3. The current study presented many types of immune cells and suggests their essential immunological role for the intestinal blub.

2.
World J Microbiol Biotechnol ; 34(12): 176, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446833

RESUMEN

Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes.


Asunto(s)
Fermentación , Hidrógeno/metabolismo , Biocombustibles , Reactores Biológicos , Economía , Combustibles Fósiles , Glucosa , Concentración de Iones de Hidrógeno , Temperatura , Residuos
3.
Cells Tissues Organs ; 203(1): 29-54, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27802428

RESUMEN

Telocytes (TCs) are a special type of interstitial cell with characteristic cellular processes that are described in many organs. The current study aimed to investigate TCs in seminal vesicles of the Soay ram responding to melatonin treatment during the nonbreeding season by conventional immunohistochemical stains, and to detect the ultrastructural and morphometrical changes of TCs. TCs in the control group showed a broad range of staining affinity and also reacted positively to CD117/c-kit, CD34, desmin, S-100 protein, and progesterone and estrogen receptors alpha, while after melatonin treatment a strong reaction against these 6 antibodies was recorded. Electron microscopically, TCs in the control group were characterized by a small cell body with distinct long cytoplasmic extensions called telopodes (Tps). Tps had alternation of the thin segment (podomers) and dilated segments (podoms), in which the latter accommodate mitochondria, rough endoplasmic reticulum and caveolae. TCs and their Tps were interconnected by homo- and heterocellular junctions and form a wide network to communicate between different cell types. Tps showed close contact with immune cells, progenitor stem cells, smooth muscle cells and other interstitial cells. Melatonin caused a significant increase in the number of TCs, length of Tps, and number and diameter of secretory vesicles. Also, the melatonin-treated group showed exaggerated secretory activity in the form of a massive release of secretory vesicles from Tps. Moreover, Tps showed an increase in their contact with blood and lymphatic capillaries, nerve endings and Schwann cells. In addition, the shedding of secretory structures (exosomes, ectosomes, and multivesicular bodies) was greater from Tps, which were involved in paracrine signaling in the melatonin-treated group. The length and ramifications of Tps together with the intercellular junctions and the releasing of shed vesicles or exosomes assumed an essential role of TCs in intercellular signaling and coordination. On the basis of their distribution and morphology, we investigated whether the different locations of TCs could be associated with different roles.


Asunto(s)
Melatonina/farmacología , Vesículas Seminales/citología , Telocitos/citología , Animales , Capilares/citología , Capilares/efectos de los fármacos , Capilares/ultraestructura , Forma de la Célula/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Inmunohistoquímica , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/metabolismo , Linfa/citología , Masculino , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Ovinos , Coloración y Etiquetado , Telocitos/efectos de los fármacos , Telocitos/metabolismo , Telocitos/ultraestructura
4.
Microsc Microanal ; 23(6): 1173-1188, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29199635

RESUMEN

Endogenous melatonin is a hormone secreted by pineal gland; it has several roles in metabolism, reproduction, and remarkable antioxidant properties. Studies on the melatonin effect on the adrenal glands which are important endocrine organs, controlling essential physiological functions, are still deficient. In this study, we attempted to investigate the effect of exogenous melatonin treatment on the adrenal cortex and medulla using several approaches. Adrenal glands of 15 Soay ram were examined to detect the effect of melatonin treatment. Our results revealed that the cells of adrenal cortex of the treated animals were separated by wide and numerous blood sinusoids and showed signs of increase steroidogenic activity, which are evidenced by functional hypertrophy with increase profiles of mitochondria, smooth endoplasmic reticulum, and lipid droplets. The most striking ultrastructural features in the medulla of the treated group were the engorgement of chromaffin cells with enlarged secretory granules enclosed within a significantly increased diameter of these cells. The cytoplasm of these cells showed numerous mitochondria, rough endoplasmic reticulum (rER), Golgi apparatus, lysosomes, and glycogen granules. Exocytosis of secretory granules to the lumen of blood vessels was evident in the treated group. Piecemeal degranulation mode of secretion was recorded after melatonin treatment. Chromaffin cells in the control group expressed moderate immunoreactivity to Synaptophysin and tyrosine hydroxylase, compared with intensified expression after melatonin treatment. The ganglion cells of the melatonin-treated group showed a significant increase in diameter with numerous rER. The most interesting feature in this study is the presence of small granule chromaffin cells (SGC) and telocytes (TCs) for the first time in the adrenal glands of sheep. Moreover, these SGC cells, Schwann cells, fibroblasts, and progenitor stem cells showed a stimulatory response. The TCs were small branched cells scattered in the adrenal glands around cortical cells, chromaffin cells, nerve fibers, and blood vessels. These cells increased significantly in number, length of their telopodes, and secretory activity after melatonin treatment. In addition, multiple profiles of unmyelinated nerve fibers were demonstrated in all treated specimens. These results indicated that melatonin treatment caused a stimulatory action on all cellular and neuronal elements of the adrenal gland. This study may act as a new direction for treatment of adrenal insufficiency.

5.
J Morphol ; 277(2): 231-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611365

RESUMEN

Fifteen adult Soay rams were used in this experiment. Eight animals were given subcutaneous implants containing melatonin, while the other seven animals were used as control. After 11 weeks, the rams were killed and the seminal vesicles were examined by light and electron microscope. In contrast to the control grouped animals, the melatonin treated rams showed morphological, morphometrical, and ultrastructural changes as a result of reactivation of the glandular tissues of the seminal glands. The ratio of interstitial connective tissues to glandular tissues was reduced in the treated group. Melatonin induced an evident significant increase in number and height of principal cells that showed signs of increased secretory activity; apical cytoplasmic protrusions became well developed and covering the inner surface of the glandular end-pieces, also, the basal cells were significantly increased in number. The main cytological alteration in the principal cells of the seminal vesicles in treated animals was prominent increase in the concentrically arranged membranes of sER, secretory vacuoles and glycogen granules and appearance of numerous lysosomes and multivesicular bodies. Interstitial Cajal- like cells were significantly increased in number and formed a network around the epithelium and between smooth muscle cells in the treated group. The main components of these cells were mitochondria, rER, sER, and many caveolae. The cytological alterations were accompanied by subepithelial and intraepithelial nonmyelinated nerve terminals in the treated animals. The results support the view that melatonin activates and increases the secretory activity of seminal gland in sheep.


Asunto(s)
Melatonina/farmacología , Vesículas Seminales/efectos de los fármacos , Oveja Doméstica/fisiología , Animales , Epitelio/ultraestructura , Masculino , Melatonina/administración & dosificación , Reproducción , Vesículas Seminales/ultraestructura , Oveja Doméstica/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA