Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905035

RESUMEN

This research examined the characteristics of cold days and spells in Bangladesh using long-term averages (1971-2000) of maximum (Tmax) and minimum temperatures (Tmin) and their standard deviations (SD). Cold days and spells were calculated and their rate of change during the winter months (December-February) of 2000-2021 was quantified. In this research, a cold day was defined as when the daily maximum or minimum temperature is ≤-1.5 the standard deviations of the long-term daily average of maximum or minimum temperature and the daily average air temperature was equal to or below 17 °C. The results showed that the cold days were more in the west-northwestern regions and far less in the southern and southeastern regions. A gradual decrease in cold days and spells was found from the north and northwest towards the south and southeast. The highest number of cold spells (3.05 spells/year) was experienced in the northwest Rajshahi division and the lowest (1.70 spells/year) in the northeast Sylhet division. In general, the number of cold spells was found to be much higher in January than in the other two winter months. In the case of cold spell severity, Rangpur and Rajshahi divisions in the northwest experienced the highest number of extreme cold spells against the highest number of mild cold spells in the Barishal and Chattogram divisions in the south and southeast. While nine (out of twenty-nine) weather stations in the country showed significant trends in cold days in December, it was not significant on the seasonal scale. Adapting the proposed method would be useful in calculating cold days and spells to facilitate regional-focused mitigation and adaptation to minimize cold-related deaths.


Asunto(s)
Frío , Tiempo (Meteorología) , Bangladesh , Temperatura , Estaciones del Año
2.
J Environ Manage ; 326(Pt B): 116813, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435143

RESUMEN

Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. However, there have not been many attempts to address these uncertainties because identifying spatial agreement in flood projections is a complex process. This study presents a framework for reducing spatial disagreement among four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression (GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation coefficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction accuracy and improved spatial agreement by reducing the number of classification errors. The framework presented in this study might aid in the formulation of risk-based development plans and enhancement of current early warning systems.


Asunto(s)
Inundaciones , Aprendizaje Automático , Incertidumbre , Redes Neurales de la Computación , Algoritmos
3.
Environ Res ; 213: 113703, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35716815

RESUMEN

BACKGROUND: Heatwaves have received major attention globally due to their detrimental effects on human health and the environment. The frequency, duration, and severity of heatwaves have increased recently due to changes in climatic conditions, anthropogenic forcing, and rapid urbanization. Australia is highly vulnerable to this hazard. Although there have been an increasing number of studies conducted in Australia related to the heatwave phenomena, a systematic review of heatwave vulnerability has rarely been reported in the literature. OBJECTIVES: This study aims to provide a systematic and overarching review of the different components of heatwave vulnerability (e.g., exposure, sensitivity, and adaptive capacity) in Australia. METHODS: A systematic review was conducted using the PRISMA protocol. Peer-reviewed English language articles published between January 2000 and December 2021 were selected using a combination of search keywords in Web of Science, Scopus, and PubMed. Articles were critically analyzed based on three specific heatwave vulnerability components: exposure, sensitivity, and adaptive capacity. RESULTS AND DISCUSSION: A total of 107 articles meeting all search criteria were chosen. Although there has been an increasing trend of heat-related studies in Australia, most of these studies have concentrated on exposure and adaptive capacity components. Evidence suggests that the frequency, severity, and duration of heatwaves in Australian cities has been increasing, and that this is likely to continue under current climate change scenarios. This study noted that heatwave vulnerability is associated with geographical and climatic factors, space, time, socioeconomic and demographic factors, as well as the physiological condition of people. Various heat mitigation and adaptation measures implemented around the globe have proven to be efficient in reducing the impacts of heatwaves. CONCLUSION: This study provides increased clarity regarding the various drivers of heatwave vulnerability in Australia. Such knowledge is crucial in informing extreme heat adaptation and mitigation planning.


Asunto(s)
Calor Extremo , Australia , Ciudades , Cambio Climático , Calor Extremo/efectos adversos , Calor , Humanos
4.
Sensors (Basel) ; 22(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458879

RESUMEN

Continuous urban expansion transforms the natural land cover into impervious surfaces across the world. It increases the city's thermal intensity that impacts the local climate, thus, warming the urban environment. Surface urban heat island (SUHI) is an indicator of quantifying such local urban warming. In this study, we quantified SUHI for the two most populated cities in Alberta, Canada, i.e., the city of Calgary and the city of Edmonton. We used the moderate resolution imaging spectroradiometer (MODIS) acquired land surface temperature (LST) to estimate the day and nighttime SUHI and its trends during 2001-2020. We also performed a correlation analysis between SUHI and selected seven influencing factors, such as urban expansion, population, precipitation, and four large-scale atmospheric oscillations, i.e., Sea Surface Temperature (SST), Pacific North America (PNA), Pacific Decadal Oscillation (PDO), and Arctic Oscillation (AO). Our results indicated a continuous increase in the annual day and nighttime SUHI values from 2001 to 2020 in both cities, with a higher magnitude found for Calgary. Moreover, the highest value of daytime SUHI was observed in July for both cities. While significant warming trends of SUHI were noticed in the annual daytime for the cities, only Calgary showed it in the annual nighttime. The monthly significant warming trends of SUHI showed an increasing pattern during daytime in June, July, August, and September in Calgary, and March and September in Edmonton. Here, only Calgary showed the nighttime significant warming trends in March, May, and August. Further, our correlation analysis indicated that population and built-up expansion were the main factors that influenced the SUHI in the cities during the study period. Moreover, SST indicated an acceptable relationship with SUHI in Edmonton only, while PDO, PNA, and AO did not show any relation in either of the two cities. We conclude that population, built-up size, and landscape pattern could better explain the variations of the SUHI intensity and trends. These findings may help to develop the adaptation and mitigating strategies in fighting the impact of SUHI and ensure a sustainable city environment.


Asunto(s)
Monitoreo del Ambiente , Calor , Alberta , Ciudades , Temperatura
5.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059453

RESUMEN

Near real time (NRT) remote sensing derived land surface temperature (Ts) data has an utmost importance in various applications of natural hazards and disasters. Space-based instrument MODIS (moderate resolution imaging spectroradiometer) acquired NRT data products of Ts are made available for the users by LANCE (Land, Atmosphere Near real-time Capability) for Earth Observing System (EOS) of NASA (National Aeronautics and Space Administration) free of cost. Such Ts products are swath data with 5 min temporal increments of satellite acquisition, and the average latency is 60-125 min to be available in public domain. The swath data of Ts requires a specialized tool, i.e., HEG (HDF-EOS to GeoTIFF conversion tool) to process and make the data useful for further analysis. However, the file naming convention of the available swath data files in LANCE is not appropriate to download for an area of interest (AOI) to be processed by HEG. In this study, we developed a method/algorithm to overcome such issues in identifying the appropriate swath data files for an AOI that would be able to further processes supported by the HEG. In this case, we used Terra MODIS acquired NRT swath data of Ts, and further applied it to an existing framework of forecasting forest fires (as a case study) for the performance evaluation of our processed Ts. We were successful in selecting appropriate swath data files of Ts for our study area that was further processed by HEG, and finally were able to generate fire danger map in the existing forecasting model. Our proposed method/algorithm could be applied on any swath data product available in LANCE for any location in the world.


Asunto(s)
Sistemas de Computación , Predicción , Temperatura , Incendios Forestales , Algoritmos , Bases de Datos como Asunto , Geografía , Imágenes Satelitales
6.
Sensors (Basel) ; 18(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762504

RESUMEN

Wildland fires are some of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this paper, our overall objective was to study the structural damages due to the 2016 Horse River Fire (HRF) that happened in Fort McMurray (Alberta, Canada) by employing primarily very high spatial resolution optical satellite data, i.e., WorldView-2. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates of the number of structural damages was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB); and found a strong linear relationship (i.e., r² value of 0.97 with a slope of 0.97). Upon delineating the WUI and its associated buffer zones at 10 m, 30 m, 50 m, 70 m and 100 m distances; we found existence of vegetation within the 30 m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30 m and 70 m buffers from the WUI, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. Our analysis revealed that approximately 30% of the areas within the buffer zones of 10 m and 30 m were vulnerable due to the presence of vegetation; in which, approximately 7% were burned during the 2016 HRF event that led the structural damages. Consequently, we suggest to remove the existing vegetation within these critical zones and also monitor the region at a regular interval in order to reduce the wildland fire-induced risk.

7.
Sensors (Basel) ; 17(10)2017 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-29036896

RESUMEN

The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.

8.
Sensors (Basel) ; 15(1): 769-91, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25569753

RESUMEN

Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.


Asunto(s)
Agricultura , Predicción , Oryza/crecimiento & desarrollo , Tecnología de Sensores Remotos/instrumentación
9.
Artículo en Inglés | MEDLINE | ID: mdl-36231477

RESUMEN

The aim of this study was to develop a database of historical cold-related mortality in Bangladesh using information obtained from online national newspapers and to analyze such data to understand the spatiotemporal distribution, demographic dynamics, and causes of deaths related to cold temperatures in winter. We prepared a comprehensive database containing information relating to the winter months (December to February) of 2009-2021 for the eight administrative divisions of Bangladesh and systematically removed redundant records. We found that 1249 people died in Bangladesh during this period due to cold and cold-related illnesses, with an average of 104.1 deaths per year. The maximum number of cold-related deaths (36.51%) occurred in the Rangpur Division. The numbers were much higher here than in the other divisions because Rangpur has the lowest average monthly air temperature during the winter months and the poorest socioeconomic conditions. The primary peak of cold-related mortality occurred during 21-31 December, when cold fronts from the Himalayas entered Bangladesh through the Rangpur Division in the north. A secondary peak occurred on 11-20 January each year. Our results also showed that most of the cold-related mortality cases occurred when the daily maximum temperature was lower than 21 °C. Demographically, the highest number of deaths was observed in children aged six years and under (50.68%), followed by senior citizens 65 years and above (20.42%). Fewer females died than males, but campfire burns were the primary cause of female deaths. Most mortality in Bangladesh was due to the cold (75.5%), cold-triggered illness (10.65%), and campfire burns (5.8%). The results of this research will assist policymakers in understanding the importance of taking necessary actions that protect vulnerable public health from cold-related hazards in Bangladesh.


Asunto(s)
Frío , Salud Pública , Bangladesh/epidemiología , Niño , Femenino , Humanos , Masculino , Mortalidad , Estaciones del Año , Temperatura
10.
PLoS One ; 17(1): e0261610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025901

RESUMEN

Our objective was to quantify the similarity in the meteorological measurements of 17 stations under three weather networks in the Alberta oil sands region. The networks were for climate monitoring under the water quantity program (WQP) and air program, including Meteorological Towers (MT) and Edge Sites (ES). The meteorological parameters were air temperature (AT), relative humidity (RH), solar radiation (SR), barometric pressure (BP), precipitation (PR), and snow depth (SD). Among the various measures implemented for finding correlations in this study, we found that the use of Pearson's coefficient (r) and absolute average error (AAE) would be sufficient. Also, we applied the percent similarity method upon considering at least 75% of the value in finding the similarity between station pairs. Our results showed that we could optimize the networks by selecting the least number of stations (for each network) to describe the measure-variability in meteorological parameters. We identified that five stations are sufficient for the measurement of AT, one for RH, five for SR, three for BP, seven for PR, and two for SD in the WQP network. For the MT network, six for AT, two for RH, six for SR, and four for PR, and the ES network requires six for AT, three for RH, six for SR, and two for BP. This study could potentially be critical to rationalize/optimize weather networks in the study area.


Asunto(s)
Clima , Yacimiento de Petróleo y Gas , Alberta , Presión Atmosférica , Humedad , Lluvia , Energía Solar , Temperatura
11.
Sci Data ; 9(1): 471, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922427

RESUMEN

A high-resolution (1 km × 1 km) monthly gridded rainfall data product during 1901-2018, named Bangladesh Gridded Rainfall (BDGR), was developed in this study. In-situ rainfall observations retrieved from a number of sources, including national organizations and undigitized data from the colonial era, were used. Leave-one-out cross-validation was used to assess product's ability to capture spatial and temporal variability. The results revealed spatial variability of the percentage bias (PBIAS) in the range of -2 to 2%, normalized root mean square error (NRMSE) <20%, and correlation coefficient (R2) >0.88 at most of the locations. The temporal variability in mean PBIAS for 1901-2018 was in the range of -4.5 to 4.3%, NRMSE between 9 and 19% and R2 in the range of 0.87 to 0.95. The BDGR also showed its capability in replicating temporal patterns and trends of observed rainfall with greater accuracy. The product can provide reliable insights regarding various hydrometeorological issues, including historical floods, droughts, and groundwater recharge for a well-recognized global climate hotspot, Bangladesh.

12.
R Soc Open Sci ; 7(8): 191957, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32968496

RESUMEN

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994-2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041-2070) and late century (2071-2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash-Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976-2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.

13.
Sci Rep ; 10(1): 10107, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572138

RESUMEN

Like many other African countries, incidence of drought is increasing in Nigeria. In this work, spatiotemporal changes in droughts under different representative concentration pathway (RCP) scenarios were assessed; considering their greatest impacts on life and livelihoods in Nigeria, especially when droughts coincide with the growing seasons. Three entropy-based methods, namely symmetrical uncertainty, gain ratio, and entropy gain were used in a multi-criteria decision-making framework to select the best performing General Circulation Models (GCMs) for the projection of rainfall and temperature. Performance of four widely used bias correction methods was compared to identify a suitable method for correcting bias in GCM projections for the period 2010-2099. A machine learning technique was then used to generate a multi-model ensemble (MME) of the bias-corrected GCM projection for different RCP scenarios. The standardized precipitation evapotranspiration index (SPEI) was subsequently computed to estimate droughts from the MME mean of GCM projected rainfall and temperature to predict possible spatiotemporal changes in meteorological droughts. Finally, trends in the SPEI, temperature and rainfall, and return period of droughts for different growing seasons were estimated using a 50-year moving window, with a 10-year interval, to understand driving factors accountable for future changes in droughts. The analysis revealed that MRI-CGCM3, HadGEM2-ES, CSIRO-Mk3-6-0, and CESM1-CAM5 are the most appropriate GCMs for projecting rainfall and temperature, and the linear scaling (SCL) is the best method for correcting bias. The MME mean of bias-corrected GCM projections revealed an increase in rainfall in the south-south, southwest, and parts of the northwest whilst a decrease in the southeast, northeast, and parts of central Nigeria. In contrast, rise in temperature for entire country during most of the cropping seasons was projected. The results further indicated that increase in temperature would decrease the SPEI across Nigeria, which will make droughts more frequent in most of the country under all the RCPs. However, increase in drought frequency would be less for higher RCPs due to increase in rainfall.

14.
PLoS One ; 13(5): e0196882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29727449

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0169423.].

15.
Sensors (Basel) ; 7(10): 2028-2048, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28903212

RESUMEN

In this paper we develop a method to estimate land-surface water content in amostly forest-dominated (humid) and topographically-varied region of eastern Canada. Theapproach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectanceas primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-basedcalculations of vertical atmospheric pressure to calculations of surface potential temperature(θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e.,~101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-daycomposites of surface reflectance in the calculation of normalized difference vegetation index(NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation ofscatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r² = 95.7%).

16.
PLoS One ; 12(1): e0169423, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072857

RESUMEN

Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961-2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming.


Asunto(s)
Cambio Climático , Tecnología de Sensores Remotos , Temperatura , Alberta , Algoritmos , Monitoreo del Ambiente , Modelos Teóricos , Estaciones del Año
17.
PLoS One ; 10(3): e0117755, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25730279

RESUMEN

Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively.


Asunto(s)
Algoritmos , Monitoreo del Ambiente/métodos , Imágenes Satelitales , Temperatura , Monitoreo del Ambiente/instrumentación , Jordania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA