Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Radiol Prot ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121874

RESUMEN

In computed tomography (CT), organ dose modulation (ODM) reduces radiation exposure from the anterior side to reduce radiation dose received by the radiosensitive organs located anteriorly. We investigated the effects of ODM applied to a part of the scan range on radiation dose in body CT. The thorax and thoraco-abdominopelvic region of an anthropomorphic whole-body phantom were imaged with and without ODM. ODM was applied to various regions, and the tube current modulation curves were compared. Additionally, the dose indices were compared with and without ODM in thoracic and thoraco-abdominopelvic CTs in 800 patients. ODM was applied to the thyroid in male patients and to the thyroid and breast in female patients. In phantom imaging of the thorax, the application of ODM below the scan range decreased the tube current, and that to the breast showed a further decrease. Decreased tube current was also observed in phantom imaging of the thoraco-abdominopelvic regions with ODM below the scan range, and the application of ODM to the whole scan range, thyroid, breast, and both thyroid and breast further reduced the tube current in the region to which ODM was applied. In patient imaging, the dose indices were significantly lower with ODM than without ODM, regardless of the scan range or sex. The absolute reduction in dose-length product was larger for thoraco-abdominopelvic CT (male, 43.2 mGy∙cm; female, 59.7 mGy∙cm) than for thoracic CT (male, 30.8 mGy∙cm; female, 37.6 mGy∙cm) in both sexes, indicating dose reduction in the abdominopelvic region to which ODM was not applied. In conclusion, The application of ODM in body CT reduces radiation dose not only in the region to which ODM is applied but also outside the region. In radiation dose management, it should be considered that even ODM applied to a limited region affects the dose indices. .

2.
Tomography ; 10(1): 14-24, 2023 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-38250948

RESUMEN

The effective dose (ED) in computed tomography (CT) may be calculated by multiplying the dose-length product (DLP) by a conversion factor. As children grow, automatic exposure control increases the DLP, while the conversion factor decreases; these two changes affect the ED in opposite ways. The aim of this study was to investigate the methods of ED estimation according to age in pediatric brain CT. We retrospectively analyzed 980 brain CT scans performed for various clinical indications in children. The conversion factor at each age, in integer years, was determined based on the values at 0, 1, 5, and 10 years provided by the International Commission on Radiological Protection (ICRP), using a curve (curve method) or lines (linear method). In the simple method, the ED was estimated using the ICRP conversion factor for the closest age. We also analyzed the ED estimated by a radiation dose management system. Although the median DLP at each age increased with age, the median ED estimated by the curve method was highest at 0 years, decreased with age, and then plateaued at 9 years. The linear method yielded mildly different results, especially at 2 and 3 years. The ED estimated by the simple method or the radiation dose management system showed inconsistent, up-and-down changes with age. In conclusion, the ED in pediatric brain CT decreases with age despite increased DLP. Determination of the conversion factor at each age using a curve is expected to contribute to estimating the ED in pediatric CT according to age.


Asunto(s)
Encéfalo , Tomografía Computarizada por Rayos X , Humanos , Niño , Recién Nacido , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA