Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 25(12): 100947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37534744

RESUMEN

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Asunto(s)
Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Pruebas Genéticas/métodos , Genómica , Exoma/genética , América del Norte
2.
Prev Med ; 172: 107539, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156429

RESUMEN

We sought to determine whether there are racial disparities in cascade testing rates and whether providing testing at no-charge impacts rates in Black and White at-risk-relatives (ARR). Probands with a pathogenic/likely pathogenic germline variant in a cancer predisposition gene were identified up to one year before and up to one year after cascade testing became no-charge in 2017. Cascade testing rates were measured as the proportion of probands who had at least one ARR obtain genetic testing through one commercial laboratory. Rates were compared between self-reported Black and White probands using logistic regression. Interaction between race and cost (pre/post policy) was tested. Significantly fewer Black probands than White probands had at least one ARR undergo cascade genetic testing (11.9% versus 21.7%, OR 0.49, 95% CI 0.39-0.61, p < 0.0001). This was seen both before (OR 0.38, 95% CI 0.24-0.61, p < 0.001) and after (OR 0.53, 95% CI 0.41-0.68, p < 0.001) the no-charge testing policy. Rates of an ARR undergoing cascade testing were low overall, and significantly lower in Black versus White probands. The magnitude of difference in cascade testing rates between Blacks and Whites did not significantly change with no-charge testing. Barriers to cascade testing in all populations should be explored in order to maximize the benefits of genetic testing for both treatment and prevention of cancer.


Asunto(s)
Pruebas Genéticas , Neoplasias , Humanos , Grupos de Población , Neoplasias/genética , Disparidades en Atención de Salud
3.
Cancer ; 128(4): 675-684, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34724198

RESUMEN

BACKGROUND: Germline variants in fumarate hydratase (FH) are associated with autosomal dominant (AD) hereditary leiomyomatosis and renal cell cancer (HLRCC) and autosomal recessive (AR) fumarase deficiency (FMRD). The prevalence and cancer penetrance across different FH variants remain unclear. METHODS: A database containing 120,061 records from individuals undergoing cancer germline testing was obtained. FH variants were classified into 3 categories: AD HLRCC variants, AR FMRD variants, and variants of unknown significance (VUSs). Individuals with variants from these categories were compared with those with negative genetic testing. RESULTS: FH variants were detected in 1.3% of individuals (AD HLRCC, 0.3%; AR FMRD, 0.4%; VUS, 0.6%). The rate of AD HLRCC variants discovered among reportedly asymptomatic individuals without a clear indication for HLRCC testing was 1 in 2668 (0.04%). In comparison with those with negative genetic testing, the renal cell carcinoma (RCC) prevalence was elevated with AD HLRCC variants (17.0% vs 4.5%; P < .01) and VUSs (6.4% vs 4.5%; P = .02) but not with AR FMRD variants. CONCLUSIONS: The prevalence of HLRCC discovered incidentally on germline testing is similar to recent population carrier estimates, and this suggests that this is a relatively common cancer syndrome. Compared with those with negative genetic testing, those with VUSs had an elevated risk of RCC, whereas those with AR FMRD variants did not.


Asunto(s)
Carcinoma de Células Renales , Fumarato Hidratasa , Neoplasias Renales , Leiomiomatosis , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/genética , Femenino , Fumarato Hidratasa/genética , Células Germinativas , Mutación de Línea Germinal , Humanos , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Leiomiomatosis/epidemiología , Leiomiomatosis/genética , Leiomiomatosis/patología , Síndromes Neoplásicos Hereditarios/epidemiología , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología , Prevalencia , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Uterinas/epidemiología , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología
4.
Br J Cancer ; 126(5): 797-803, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949788

RESUMEN

BACKGROUND AND AIMS: CDH1 germline variants have been linked to heritability in diffuse gastric (DGC) and lobular breast cancer (LBC). Studies have not yet assessed whether CDH1 is a cancer-susceptibility gene in other cancers. Herein, we mapped the landscape of pathogenic and likely pathogenic (P/LP) germline variants in CDH1 across various cancers and ethnicities. METHODS: We evaluated CDH1 germline P/LP variants in 212,944 patients at one CLIA-certified laboratory (Invitae) and described their frequency in 7 cancer types. We screened for CDH1 variant enrichment in each cancer relative to a cancer-free population from The Genome Aggregation Database version 3 (gnomADv3). RESULTS: CDH1 P/LP variants were identified in 141 patients, most commonly in patients with DGC (27/408, 6.6%) followed by colorectal signet-ring cell cancer (CSRCC; 3/79, 3.8%), gastric cancer (56/2756, 2%), and LBC (22/6809, 0.3%). CDH1 P/LP variants were enriched in specific ethnic populations with breast cancer, gastric cancer, CRC, LBC, DGC, and CSRCC compared to matched ethnicities from gnomADv3. CONCLUSION: We report for the first time the prevalence of P/LP CDH1 variants across several cancers and show significant enrichment in CDH1 P/LP variants for patients with CSRCC, DGC, and LBC across various ethnicities. Future prospective studies are warranted to validate these findings.


Asunto(s)
Antígenos CD/genética , Neoplasias de la Mama/genética , Cadherinas/genética , Carcinoma Lobular/genética , Carcinoma de Células en Anillo de Sello/genética , Neoplasias Colorrectales/genética , Mutación de Línea Germinal , Neoplasias Gástricas/genética , Adulto , Anciano , Neoplasias de la Mama/etnología , Carcinoma Lobular/etnología , Carcinoma de Células en Anillo de Sello/etnología , Neoplasias Colorrectales/etnología , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Tasa de Mutación , Prevalencia , Análisis de Secuencia de ADN , Neoplasias Gástricas/etnología , Adulto Joven
5.
Breast Cancer Res Treat ; 196(2): 355-361, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36094610

RESUMEN

PURPOSE: Cancer risks conferred by germline, heterozygous, ATM pathogenic/likely pathogenic variants (PSVs) are yet to be consistently determined. The current study assessed these risks by analysis of a large dataset of ATM heterozygote loss of function (LOF) and missense PSV carriers tested with a multigene panel (MGP). METHODS: De-identified data of all individuals who underwent ATM sequencing as part of MGP between October 2015 and February 2020 were reviewed. In cancer cases, rates for the six most prevalent variants and for all LOF and missense PSV combined were compared with rates of the same PSV in ethnically matched, healthy population controls. Statistical analysis included Chi-square tests and odds ratios calculations. RESULTS: For female breast cancer cases, LOF )1794/219,269) and missense (301/219,269) ATM PSVs were seen at higher rates compared to gnomAD non-cancer controls (n = 157/56,001 and n = 27/61,208; p < 0.00001, respectively). Notably, the rate of the c.103C > T variant was higher in controls than in breast cancer cases [p = 0.001; OR 0.31 (95% CI 0.1-0.6)]. For all cancer cases combined, compared with non-cancer population controls, LOF (n = 143) and missense (n = 15) PSVs reported in both datasets were significantly more prevalent in cancer cases [ORLOF 1.7 (95% 1.5-1.9) ORmissense 3.0 (95% CI 2.3-4); p = 0.0001]. CONCLUSION: Both LOF and missense heterozygous ATM PSVs are more frequently detected in cases of several cancer types (breast, ovarian, prostate, lung, pancreatic) compared with healthy population controls. However, not all ATM PSVs confer an increased cancer risk (e.g., breast).


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Femenino , Humanos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Mutación Missense , Pérdida de Heterocigocidad , Heterocigoto , Proteínas de la Ataxia Telangiectasia Mutada/genética
6.
Genet Epidemiol ; 44(2): 208-217, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31830327

RESUMEN

25-Hydroxyvitamin D (25(OH)D) concentration is a complex trait with genetic and environmental predictors that may determine how much vitamin D exposure is required to reach optimal concentration. Interactions between continuous measures of a polygenic score (PGS) and vitamin D intake (PGS*intake) or available ultraviolet (UV) radiation (PGS*UV) were evaluated in individuals of African (n = 1,099) or European (n = 8,569) ancestries. Interaction terms and joint effects (main and interaction terms) were tested using one-degree of freedom (1-DF) and 2-DF models, respectively. Models controlled for age, sex, body mass index, cohort, and dietary intake/available UV. In addition, in participants achieving Institute of Medicine (IOM) vitamin D intake recommendations, 25(OH)D was evaluated by level PGS. The 2-DF PGS*intake, 1-DF PGS*UV, and 2-DF PGS*UV results were statistically significant in participants of European ancestry (p = 3.3 × 10-18 , p = 2.1 × 10-2 , and p = 2.4 × 10-19 , respectively), but not in those of African ancestry. In European-ancestry participants reaching IOM vitamin D intake guidelines, the percent of participants achieving adequate 25(OH)D ( >20 ng/ml) increased as genetic risk decreased (72% vs. 89% in highest vs. lowest risk; p = .018). Available UV radiation and vitamin D intake interact with genetics to influence 25(OH)D. Individuals with higher genetic risk may require more vitamin D exposure to maintain optimal 25(OH)D concentrations.


Asunto(s)
Ambiente , Etnicidad/genética , Predisposición Genética a la Enfermedad , Vitamina D/análogos & derivados , Estudios de Cohortes , Femenino , Interacción Gen-Ambiente , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , Factores de Riesgo , Vitamina D/sangre , Deficiencia de Vitamina D
7.
BMC Med ; 19(1): 199, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34404389

RESUMEN

BACKGROUND: The use of proactive genetic screening for disease prevention and early detection is not yet widespread. Professional practice guidelines from the American College of Medical Genetics and Genomics (ACMG) have encouraged reporting pathogenic variants that confer personal risk for actionable monogenic hereditary disorders, but only as secondary findings from exome or genome sequencing. The Centers for Disease Control and Prevention (CDC) recognizes the potential public health impact of three Tier 1 actionable disorders. Here, we report results of a large multi-center cohort study to determine the yield and potential value of screening healthy individuals for variants associated with a broad range of actionable monogenic disorders, outside the context of secondary findings. METHODS: Eligible adults were offered a proactive genetic screening test by health care providers in a variety of clinical settings. The screening panel based on next-generation sequencing contained up to 147 genes associated with monogenic disorders within cancer, cardiovascular, and other important clinical areas. Sequence and intragenic copy number variants classified as pathogenic, likely pathogenic, pathogenic (low penetrance), or increased risk allele were considered clinically significant and reported. Results were analyzed by clinical area and severity/burden of disease using chi-square tests without Yates' correction. RESULTS: Among 10,478 unrelated adults screened, 1619 (15.5%) had results indicating personal risk for an actionable monogenic disorder. In contrast, only 3.1 to 5.2% had clinically reportable variants in genes suggested by the ACMG version 2 secondary findings list to be examined during exome or genome sequencing, and 2% had reportable variants related to CDC Tier 1 conditions. Among patients, 649 (6.2%) were positive for a genotype associated with a disease of high severity/burden, including hereditary cancer syndromes, cardiovascular disorders, or malignant hyperthermia susceptibility. CONCLUSIONS: This is one of the first real-world examples of specialists and primary care providers using genetic screening with a multi-gene panel to identify health risks in their patients. Nearly one in six individuals screened for variants associated with actionable monogenic disorders had clinically significant results. These findings provide a foundation for further studies to assess the role of genetic screening as part of regular medical care.


Asunto(s)
Pruebas Genéticas , Médicos , Adulto , Estudios de Cohortes , Exoma , Predisposición Genética a la Enfermedad , Genómica , Humanos
8.
Genet Med ; 23(9): 1673-1680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34007000

RESUMEN

PURPOSE: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. METHODS: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. RESULTS: In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. CONCLUSION: The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.


Asunto(s)
Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Niño , Variaciones en el Número de Copia de ADN/genética , Humanos , Mutación INDEL/genética , Proyectos Piloto
9.
Hum Genet ; 138(10): 1155-1169, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31342140

RESUMEN

Vitamin D inadequacy, assessed by 25-hydroxyvitamin D [25(OH)D], affects around 50% of adults in the United States and is associated with numerous adverse health outcomes. Blood 25(OH)D concentrations are influenced by genetic factors that may determine how much vitamin D intake is required to reach optimal 25(OH)D. Despite large genome-wide association studies (GWASs), only a small portion of the genetic factors contributing to differences in 25(OH)D has been discovered. Therefore, knowledge of a fuller set of genetic factors could be useful for risk prediction of 25(OH)D inadequacy, personalized vitamin D supplementation, and prevention of downstream morbidity and mortality. Using PRSice and weights from published African- and European-ancestry GWAS summary statistics, ancestry-specific polygenic scores (PGSs) were created to capture a more complete set of genetic factors in those of European (n = 9569) or African ancestry (n = 2761) from three cohort studies. The PGS for African ancestry was derived using all input SNPs (a p value cutoff of 1.0) and had an R2 of 0.3%; for European ancestry, the optimal PGS used a p value cutoff of 3.5 × 10-4 in the target/tuning dataset and had an R2 of 1.0% in the validation cohort. Those with highest genetic risk had 25(OH)D that was 2.8-3.0 ng/mL lower than those with lowest genetic risk (p = 0.0463-3.2 × 10-13), requiring an additional 467-500 IU of vitamin D intake to maintain equivalent 25(OH)D. PGSs are a powerful predictive tool that could be leveraged for personalized vitamin D supplementation to prevent the negative downstream effects of 25(OH)D inadequacy.


Asunto(s)
Población Negra/genética , Genética de Población , Patrón de Herencia , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Vitamina D/análogos & derivados , Población Blanca/genética , Estudios de Cohortes , Bases de Datos Genéticas , Suplementos Dietéticos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Rayos Ultravioleta , Vitamina D/sangre
12.
WMJ ; 114(6): 240-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26854311

RESUMEN

OBJECTIVE: To develop a method to assess long-term and recent progress for leading health indicators in Wisconsin. METHODS: Data from state and national sources were compiled. Baseline (10-year) trends for 20 health indicators were measured and compared to the Healthy People 2020 improvement standard of 1% per year. Additionally, current rates were assessed by comparing the most recent year of data to the expected rate had the previous 10-year baseline trend continued. Where available, health indicator trends were reported by gender, race/ethnicity, geography, and socioeconomic status. RESULTS: Wisconsin improved on 10 of the 20 indicators over the past decade, with decreasing mortality rates for all age groups. The largest improvement was a decline of 3.0% per year in deaths among ito 24 year olds. The rates of teen births and adult excessive drinking also improved by 2.5% per year and 1.4% per year, respectively. Other indicators worsened. For example, increasing rates of low birthweight (+ 0.6% per year), adults in fair or poor health (+1.6% per year), and all socioeconomic indicators worsened (high school dropouts [+0.9% per year], unemployment [+5.9% per year], children in poverty [+5.1% per year], and violent crime [+2.3% per year]). Health indicators varied substantially across subgroups within Wisconsin. For example, African Americans were twice as likely to experience low birthweight compared to other racial subgroups, and males experienced death rates higher than females across all ages. CONCLUSION: Reporting current estimates and 10-year trends of leading health indicators helps identify areas of progress and opportunities for improvement. Despite progress in reducing death rates and several other health factors, self-reported health status is worsening in Wisconsin. Worsening socioeconomic conditions and health disparities represent significant public health challenges for Wisconsin's future.


Asunto(s)
Indicadores de Salud , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Disparidades en el Estado de Salud , Humanos , Lactante , Masculino , Persona de Mediana Edad , Grupos Raciales , Factores Socioeconómicos , Wisconsin/epidemiología
13.
Epilepsia Open ; 9(1): 439-444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071479

RESUMEN

The identification of numerous genetically based epilepsies has resulted in the widespread use of genetic testing to inform epilepsy etiology. Our study aims to investigate whether a difference exists in the diagnostic evaluation and healthcare-related cost expenditures of pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis through multigene epilepsy panel (MEP) testing and comparing those who underwent early (EGT) versus late genetic testing (LGT). Testing was defined as early (less than 1 year), or late (more than 1 year), following clinical epilepsy diagnosis. A retrospective chart review of pediatric individuals (1-17 years) with epilepsy of unknown etiology who underwent multigene epilepsy panel (MEP) testing identified 28 of 226 (12%) individuals with a pathogenic epilepsy variant [EGT n = 8 (29%); LGT n = 20 (71%)]. The average time from clinical epilepsy diagnosis to genetic diagnosis was 0.25 years (EGT), compared with 7.1 years (LGT). The EGT cohort underwent fewer metabolic tests [EGT n = 0 (0%); LGT n = 16 (80%) (P < 0.01)] and invasive procedures [EGT n = 0 (0%); LGT n = 5 (25%) (P = 0.06)]. Clinical management changes implemented due to genetic diagnosis occurred in 10 (36%) patients [EGT n = 2 (25%); LGT n = 8 (40%) (P = 0.76)]. Early genetic testing with a MEP in pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis is associated with fewer non-diagnostic tests and invasive procedures and reduced estimated overall healthcare-related costs. PLAIN LANGUAGE SUMMARY: This study aims to investigate whether a difference exists in the diagnostic evaluation and cost expenditures of pediatric patients (1-17 years) with epilepsy of unknown cause who are ultimately diagnosed with a genetic cause of epilepsy through multigene epilepsy panel testing and comparing those who underwent early testing (less than 1 year) versus late testing (more than 1 year) after clinical epilepsy diagnosis. Of the 28 of 226 individuals with a confirmed genetic cause of epilepsy on multigene epilepsy panel testing, performing early testing was associated with fewer non-diagnostic tests, fewer invasive procedures and reduced estimated overall healthcare-related costs.


Asunto(s)
Epilepsia , Pruebas Genéticas , Humanos , Niño , Estudios Retrospectivos , Pruebas Genéticas/métodos , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/complicaciones
14.
Urology ; 176: 106-114, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36773955

RESUMEN

OBJECTIVE: To clarify the link between germline variants in fumarate hydratase (FH), hereditary leiomyomatosis and renal cell cancer (HLRCC), and paraganglioma (PGL) and pheochromocytoma (PCC) we utilize a well-annotated hereditary cancer testing database. METHODS: Records of 120,061 patients receiving germline testing were obtained. FH variants were classified into 4 categories: autosomal dominant (AD) HLRCC variants, autosomal recessive (AR) fumarase deficiency (FMRD), variants, previously reported as PGL/PCC FH variants, and variants of unknown significance (VUS) not previously associated with PGL/PCC (NPP-VUS). Rates of PGL/PCC were compared with those with negative genetic testing. RESULTS: About 1.3% of individuals carried FH variants which were more common among individuals with PGL/PCC compared to those without (3.1% vs 1.3%, P < .0001). PGL/PCC rates were higher among individuals with PGL/PCC FH variants compared to those with negative genetic testing (22.2% vs 0.9%, P < .0001). Neither AD HLRCC variants (0.3% vs 0.9%, P = .35) nor AR FMRD variants (1.4% vs 0.9%, P = .19) carried an increased prevalence of PGL/PCC. An increased prevalence of PGL/PCC was detected in those with NPP-VUS (2.0% vs 0.9%, P = .0023). CONCLUSIONS: Certain FH variants confer an increased risk of PGL/PCC, but not necessarily HLRCC. While universal screening for PGL/PCC among all individuals with FH variants does not appear warranted, it should be considered in select high-risk PGL/PCC FH variants.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Fumarato Hidratasa/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias Cutáneas/genética
15.
JCO Precis Oncol ; 7: e2200695, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535880

RESUMEN

PURPOSE: Among cancer predisposition genes, most direct-to-consumer (DTC) genetic tests evaluate three Ashkenazi Jewish (AJ) founder mutations in BRCA1/2, which represent a small proportion of pathogenic or likely pathogenic variants (PLPV) in cancer predisposing genes. In this study, we investigate PLPV in BRCA1/2 and other cancer predisposition genes that are missed by testing only AJ founder BRCA1/2 mutations. METHODS: Individuals were referred to genetic testing for personal diagnoses of breast and/or ovarian cancer (clinical cohort) or were self-referred (nonindication-based cohort). There were 348,692 participants in the clinical cohort and 7,636 participants in the nonindication-based cohort. Both cohorts were analyzed for BRCA1/2 AJ founder mutations. Full sequence analysis was done for PLPV in BRCA1/2, CDH1, PALB2, PTEN, STK11, TP53, ATM, BARD1, BRIP1, CHEK2 (truncating variants), EPCAM, MLH1, MSH2/6, NF1, PMS2, RAD51C/D, and 22 other genes. RESULTS: BRCA1/2 AJ founder mutations accounted for 10.8% and 29.7% of BRCA1/2 PLPV in the clinical and nonindication-based cohorts, respectively. AJ founder mutations accounted for 89.9% of BRCA1/2 PLPV in those of full AJ descent, but only 69.6% of those of partial AJ descent. In total, 0.5% of all individuals had a BRCA1/2 AJ founder variant, while 7.7% had PLPV in a high-risk breast/ovarian cancer gene. For non-AJ individuals, limiting evaluation to the AJ founder BRCA1/2 mutations missed >90% of mutations in actionable cancer risk genes. Secondary analysis revealed a false-positive rate of 69% for PLPV outside of non-AJ BRCA 1/2 founder mutations. CONCLUSION: DTC genetic testing misses >90% of BRCA1/2 PLPV in individuals of non-AJ ancestry and about 10% of BRCA1/2 PLPV among AJ individuals. There is a high false-positivity rate for non-AJ BRCA 1/2 PLPV with DTC genetic testing.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA2/genética , Estudios Retrospectivos , Predisposición Genética a la Enfermedad/genética , Detección Precoz del Cáncer , Pruebas Genéticas , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
16.
JAMA Netw Open ; 6(10): e2339571, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37878314

RESUMEN

Importance: Variants of uncertain significance (VUSs) are rampant in clinical genetic testing, frustrating clinicians, patients, and laboratories because the uncertainty hinders diagnoses and clinical management. A comprehensive assessment of VUSs across many disease genes is needed to guide efforts to reduce uncertainty. Objective: To describe the sources, gene distribution, and population-level attributes of VUSs and to evaluate the impact of the different types of evidence used to reclassify them. Design, Setting, and Participants: This cohort study used germline DNA variant data from individuals referred by clinicians for diagnostic genetic testing for hereditary disorders. Participants included individuals for whom gene panel testing was conducted between September 9, 2014, and September 7, 2022. Data were analyzed from September 1, 2022, to April 1, 2023. Main Outcomes and Measures: The outcomes of interest were VUS rates (stratified by age; clinician-reported race, ethnicity, and ancestry groups; types of gene panels; and variant attributes), percentage of VUSs reclassified as benign or likely benign vs pathogenic or likely pathogenic, and enrichment of evidence types used for reclassifying VUSs. Results: The study cohort included 1 689 845 individuals ranging in age from 0 to 89 years at time of testing (median age, 50 years), with 1 203 210 (71.2%) female individuals. There were 39 150 Ashkenazi Jewish individuals (2.3%), 64 730 Asian individuals (3.8%), 126 739 Black individuals (7.5%), 5539 French Canadian individuals (0.3%), 169 714 Hispanic individuals (10.0%), 5058 Native American individuals (0.3%), 2696 Pacific Islander individuals (0.2%), 4842 Sephardic Jewish individuals (0.3%), and 974 383 White individuals (57.7%). Among all individuals tested, 692 227 (41.0%) had at least 1 VUS and 535 385 (31.7%) had only VUS results. The number of VUSs per individual increased as more genes were tested, and most VUSs were missense changes (86.6%). More VUSs were observed per sequenced gene in individuals who were not from a European White population, in middle-aged and older adults, and in individuals who underwent testing for disorders with incomplete penetrance. Of 37 699 unique VUSs that were reclassified, 30 239 (80.2%) were ultimately categorized as benign or likely benign. A mean (SD) of 30.7 (20.0) months elapsed for VUSs to be reclassified to benign or likely benign, and a mean (SD) of 22.4 (18.9) months elapsed for VUSs to be reclassified to pathogenic or likely pathogenic. Clinical evidence contributed most to reclassification. Conclusions and Relevance: This cohort study of approximately 1.6 million individuals highlighted the need for better methods for interpreting missense variants, increased availability of clinical and experimental evidence for variant classification, and more diverse representation of race, ethnicity, and ancestry groups in genomic databases. Data from this study could provide a sound basis for understanding the sources and resolution of VUSs and navigating appropriate next steps in patient care.


Asunto(s)
Enfermedades Genéticas Congénitas , Pruebas Genéticas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven , Indio Americano o Nativo de Alaska , Canadá , Estudios de Cohortes , Etnicidad/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/etnología , Enfermedades Genéticas Congénitas/genética , Grupos Raciales/etnología , Grupos Raciales/genética
17.
JAMA Netw Open ; 6(10): e2338995, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37870835

RESUMEN

Importance: HFE gene-associated hereditary hemochromatosis type 1 (HH1) is underdiagnosed, resulting in missed opportunities for preventing morbidity and mortality. Objective: To assess whether screening for p.Cys282Tyr homozygosity is associated with recognition and management of asymptomatic iron overload. Design, Setting, and Participants: This cross-sectional study obtained data from the Geisinger MyCode Community Health Initiative, a biobank of biological samples and linked electronic health record data from a rural, integrated health care system. Participants included those who received a p.Cys282Tyr homozygous result via genomic screening (MyCode identified), had previously diagnosed HH1 (clinically identified), and those negative for p.Cys282Tyr homozygosity between 2017 and 2018. Data were analyzed from April 2020 to August 2023. Exposure: Disclosure of a p.Cys282Tyr homozygous result. Main Outcomes and Measures: Postdisclosure management and HFE-associated phenotypes in MyCode-identified participants were analyzed. Rates of HFE-associated phenotypes in MyCode-identified participants were compared with those of clinically identified participants. Relevant laboratory values and rates of laboratory iron overload among participants negative for p.Cys282Tyr homozygosity were compared with those of MyCode-identified participants. Results: A total of 86 601 participants had available exome sequences at the time of analysis, of whom 52 994 (61.4%) were assigned female at birth, and the median (IQR) age was 62.0 (47.0-73.0) years. HFE p.Cys282Tyr homozygosity was disclosed to 201 participants, of whom 57 (28.4%) had a prior clinical HH1 diagnosis, leaving 144 participants who learned of their status through screening. There were 86 300 individuals negative for p.Cys282Tyr homozygosity. After result disclosure, among MyCode-identified participants, 99 (68.8%) had a recommended laboratory test and 36 (69.2%) with laboratory or liver biopsy evidence of iron overload began phlebotomy or chelation. Fifty-three (36.8%) had iron overload; rates of laboratory iron overload were higher in MyCode-identified participants than participants negative for p.Cys282Tyr homozygosity (females: 34.1% vs 2.1%, P < .001; males: 39.0% vs 2.9%, P < .001). Iron overload (females: 34.1% vs 79.3%, P < .001; males: 40.7% vs 67.9%, P = .02) and some liver-associated phenotypes were observed at lower frequencies in MyCode-identified participants compared with clinically identified individuals. Conclusions and Relevance: Results of this cross-sectional study showed the ability of genomic screening to identify undiagnosed iron overload and encourage relevant management, suggesting the potential benefit of population screening for HFE p.Cys282Tyr homozygosity. Further studies are needed to examine the implications of genomic screening for health outcomes and cost-effectiveness.


Asunto(s)
Hemocromatosis , Sobrecarga de Hierro , Masculino , Recién Nacido , Humanos , Femenino , Persona de Mediana Edad , Anciano , Hemocromatosis/diagnóstico , Hemocromatosis/genética , Hemocromatosis/terapia , Estudios Transversales , Proteína de la Hemocromatosis/genética , Sobrecarga de Hierro/diagnóstico , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/complicaciones , Pruebas Genéticas
18.
Eur Urol Oncol ; 6(5): 477-483, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574391

RESUMEN

BACKGROUND: Prostate cancer (PCa) patients with pathogenic/likely pathogenic germline variants (PGVs) in cancer predisposition genes may be eligible for U.S. Food and Drug Administration-approved targeted therapies, clinical trials, or enhanced screening. Studies suggest that eligible patients are missing genetics-informed care due to restrictive testing criteria. OBJECTIVE: To establish the prevalence of actionable PGVs among prospectively accrued, unselected PCa patients, stratified by their guideline eligibility. DESIGN, SETTING, AND PARTICIPANTS: Consecutive, unselected PCa patients were enrolled at 15 sites in the USA from October 2019 to August 2021, and had multigene cancer panel testing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Correlates between the prevalence of PGVs and clinician-reported demographic and clinical characteristics were examined. RESULTS AND LIMITATIONS: Among 958 patients (median [quartiles] age at diagnosis 65 [60, 71] yr), 627 (65%) had low- or intermediate-risk disease (grade group 1, 2, or 3). A total of 77 PGVs in 17 genes were identified in 74 patients (7.7%, 95% confidence interval [CI] 6.2-9.6%). No significant difference was found in the prevalence of PGVs among patients who met the 2019 National Comprehensive Cancer Network Prostate criteria (8.8%, 43/486, 95% CI 6.6-12%) versus those who did not (6.6%, 31/472, 95% CI 4.6-9.2%; odds ratio 1.38, 95% CI 0.85-2.23), indicating that these criteria would miss 42% of patients (31/74, 95% CI 31-53%) with PGVs. The criteria were less effective at predicting PGVs in patients from under-represented populations. Most PGVs (81%, 60/74) were potentially clinically actionable. Limitations include the inability to stratify analyses based on individual ethnicity due to low numbers of non-White patients with PGVs. CONCLUSIONS: Our results indicate that almost half of PCa patients with PGVs are missed by current testing guidelines. Comprehensive germline genetic testing should be offered to all patients with PCa. PATIENT SUMMARY: One in 13 patients with prostate cancer carries an inherited variant that may be actionable for the patient's current care or prevention of future cancer, and could benefit from expanded testing criteria.

19.
Front Genet ; 13: 867226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783293

RESUMEN

Although multiple factors can influence the uptake of cascade genetic testing, the impact of proband indication has not been studied. We performed a retrospective, cross-sectional study comparing cascade genetic testing rates among relatives of probands who received either diagnostic germline testing or non-indication-based proactive screening via next-generation sequencing (NGS)-based multigene panels for hereditary cancer syndromes (HCS) and/or familial hypercholesterolemia (FH). The proportion of probands with a medically actionable (positive) finding were calculated based on genes associated with Centers for Disease Control and Prevention (CDC) Tier 1 conditions, HCS genes, and FH genes. Among probands with a positive finding, cascade testing rates and influencing factors were assessed. A total of 270,715 probands were eligible for inclusion in the study (diagnostic n = 254,281,93.9%; proactive n = 16,434, 6.1%). A positive result in a gene associated with a CDC Tier 1 condition was identified in 10,520 diagnostic probands (4.1%) and 337 proactive probands (2.1%), leading to cascade testing among families of 3,305 diagnostic probands (31.4%) and 36 proactive probands (10.7%) (p < 0.0001). A positive result in an HCS gene was returned to 23,272 diagnostic probands (9.4%) and 970 proactive probands (6.1%), leading to cascade testing among families of 6,611 diagnostic probands (28.4%) and 89 proactive probands (9.2%) (p < 0.0001). Cascade testing due to a positive result in an HCS gene was more commonly pursued when the diagnostic proband was White, had a finding in a gene associated with a CDC Tier 1 condition, or had a personal history of cancer, or when the proactive proband was female. A positive result in an FH gene was returned to 1,647 diagnostic probands (25.3%) and 67 proactive probands (0.62%), leading to cascade testing among families of 360 diagnostic probands (21.9%) and 4 proactive probands (6.0%) (p < 0.01). Consistently higher rates of cascade testing among families of diagnostic probands may be due to a perceived urgency because of personal or family history of disease. Due to the proven clinical benefit of cascade testing, further research on obstacles to systematic implementation and uptake of testing for relatives of any proband with a medically actionable variant is warranted.

20.
HGG Adv ; 3(2): 100086, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35128484

RESUMEN

Functional assessment of genomic variants provides a promising approach to systematically examine the potential pathogenicity of variants independent of associated clinical data. However, making such conclusions requires validation with appropriate clinical findings. To this end, here, we use variant calls from exome data and BRCA1-related cancer diagnoses from electronic health records to demonstrate an association between published laboratory-based functional designations of BRCA1 variants and BRCA1-related cancer diagnoses in an unselected cohort of patient-participants. These findings validate and support further exploration of functional assay data to better understand the pathogenicity of rare variants. This information may be valuable in the context of healthy population genomic screening, where many rare, potentially pathogenic variants may not have sufficient associated clinical data to inform their interpretation directly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA