Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Pathol ; 193(6): 796-812, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906264

RESUMEN

Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.


Asunto(s)
Adiposidad , Antibacterianos , Masculino , Ratones , Animales , Antibacterianos/efectos adversos , Estudios Retrospectivos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Hígado/metabolismo , Tetraciclinas/metabolismo
2.
J Clin Periodontol ; 50(12): 1670-1684, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37667415

RESUMEN

AIM: Antimicrobial-induced shifts in commensal oral microbiota can dysregulate helper T-cell oral immunity to affect osteoclast-osteoblast actions in alveolar bone. Antibiotic prophylaxis is commonly performed with dental implant placement surgery to prevent post-surgical complications. However, antibiotic prophylaxis effects on osteoimmune processes supporting dental implant osseointegration are unknown. The aim of the study was to discern the impact of antibiotic prophylaxis on dental implant placement surgery-induced osteoimmune wound healing and osseointegration. MATERIALS AND METHODS: We performed SHAM or dental implant placement surgery in mice. Groups were administered prophylactic antibiotics (amoxicillin or clindamycin) or vehicle. Gingival bacteriome was assessed via 16S sequencing. Helper T-cell oral immunity was evaluated by flow cytometry. Osteoclasts and osteoblasts were assessed via histomorphometry. Implant osseointegration was evaluated by micro-computed tomography. RESULTS: Dental implant placement surgery up-regulated TH 1, TH 2 and TREG cells in cervical lymph nodes (CLNs), which infers helper T-cell oral immunity contributes to dental implant placement osseous wound healing. Prophylactic antibiotics with dental implant placement surgery caused a bacterial dysbiosis, suppressed TH 1, TH 2 and TREG cells in CLNs, reduced osteoclasts and osteoblasts lining peri-implant alveolar bone, and attenuated the alveolar bone-implant interface. CONCLUSIONS: Antibiotic prophylaxis dysregulates dental implant placement surgery-induced osteoimmune wound healing and attenuates the alveolar bone-implant interface in mice.


Asunto(s)
Implantes Dentales , Animales , Ratones , Profilaxis Antibiótica , Interfase Hueso-Implante , Microtomografía por Rayos X , Implantación Dental Endoósea/métodos , Oseointegración/fisiología , Cicatrización de Heridas/fisiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Lab Invest ; 102(4): 363-375, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34934182

RESUMEN

The alveolar bone is a unique osseous tissue due to the presence of the teeth and the proximity of commensal oral microbes. Commensal microbe effects on alveolar bone homeostasis have been attributed to the oral microbiota, yet the impact of commensal gut microbes is unknown. Study purpose was to elucidate whether commensal gut microbes regulate osteoimmune mechanisms and skeletal homeostasis in alveolar bone. Male C57BL/6T germfree (GF) littermate mice were maintained as GF or monoassociated with segmented filamentous bacteria (SFB), a commensal gut bacterium. SFB has been shown to elicit broad immune response effects, including the induction of TH17/IL17A immunity, which impacts the development and homeostasis of host tissues. SFB colonized the gut, but not oral cavity, and increased IL17A levels in the ileum and serum. SFB had catabolic effects on alveolar bone and non-oral skeletal sites, which was attributed to enhanced osteoclastogenesis. The alveolar bone marrow of SFB vs. GF mice had increased dendritic cells, activated helper T-cells, TH1 cells, TH17 cells, and upregulated Tnf. Primary osteoblast cultures from SFB and GF mice were stimulated with vehicle-control, IL17A, or TNF to elucidate osteoblast-derived signaling factors contributing to the pro-osteoclastic phenotype in SFB mice. Treatment of RAW264.7 osteoclastic cells with supernatants from vehicle-stimulated SFB vs. GF osteoblasts recapitulated the osteoclast phenotype found in vivo. Supernatants from TNF-stimulated osteoblasts normalized RAW264.7 osteoclast endpoints across SFB and GF cultures, which was dependent on the induction of CXCL1 and CCL2. This report reveals that commensal gut microbes have the capacity to regulate osteoimmune processes in alveolar bone. Outcomes from this investigation challenge the current paradigm that alveolar bone health and homeostasis is strictly regulated by oral microbes.


Asunto(s)
Huesos , Osteoclastos , Animales , Bacterias , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Células Th17
4.
FASEB J ; 35(11): e22015, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34699641

RESUMEN

Periodontitis-mediated alveolar bone loss is caused by dysbiotic shifts in the commensal oral microbiota that upregulate proinflammatory osteoimmune responses. The study purpose was to determine whether antimicrobial-induced disruption of the commensal microbiota has deleterious effects on alveolar bone. We administered an antibiotic cocktail, minocycline, or vehicle-control to sex-matched C57BL/6T mice from age 6- to 12 weeks. Antibiotic cocktail and minocycline had catabolic effects on alveolar bone in specific-pathogen-free (SPF) mice. We then administered minocycline or vehicle-control to male mice reared under SPF and germ-free conditions, and we subjected minocycline-treated SPF mice to chlorhexidine oral antiseptic rinses. Alveolar bone loss was greater in vehicle-treated SPF versus germ-free mice, demonstrating that the commensal microbiota drives naturally occurring alveolar bone loss. Minocycline- versus vehicle-treated germ-free mice had similar alveolar bone loss outcomes, implying that antimicrobial-driven alveolar bone loss is microbiota dependent. Minocycline induced phylum-level shifts in the oral bacteriome and exacerbated naturally occurring alveolar bone loss in SPF mice. Chlorhexidine further disrupted the oral bacteriome and worsened alveolar bone loss in minocycline-treated SPF mice, validating that antimicrobial-induced oral dysbiosis has deleterious effects on alveolar bone. Minocycline enhanced osteoclast size and interface with alveolar bone in SPF mice. Neutrophils and plasmacytoid dendritic cells were upregulated in cervical lymph nodes of minocycline-treated SPF mice. Paralleling the upregulated proinflammatory innate immune cells, minocycline therapy increased TH 1 and TH 17 cells that have known pro-osteoclastic actions in the alveolar bone. This report reveals that antimicrobial perturbation of the commensal microbiota induces a proinflammatory oral dysbiotic state that exacerbates naturally occurring alveolar bone loss.


Asunto(s)
Pérdida de Hueso Alveolar/microbiología , Antibacterianos/efectos adversos , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499557

RESUMEN

Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias de la Próstata , Humanos , Masculino , Linfocitos T , Próstata , Antígenos de Histocompatibilidad Clase II/metabolismo , Neoplasias de la Próstata/metabolismo , Péptidos/metabolismo , Linfocitos T CD4-Positivos , Presentación de Antígeno
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162988

RESUMEN

Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.


Asunto(s)
Melanoma , Compuestos de Sulfhidrilo , Presentación de Antígeno , Antígenos de Neoplasias , Antígenos HLA , Humanos , Lisosomas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Péptidos
7.
J Cell Biochem ; 122(10): 1534-1543, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34228377

RESUMEN

We have recently demonstrated NFAT activating protein with ITAM motif 1 (NFAM1) signaling increases osteoclast (OCL) formation/bone resorption associated with the Paget's disease of bone, however, the underlying molecular mechanisms of the NFAM1 regulation of OCL differentiation and bone resorption remains unclear. Here, we showed that RANK ligand stimulation enhances NFAM1 expression in preosteoclast cells. Conditioned media collected from RANKL stimulated RAW264.7 NFAM1 knockdown (KD) stable cells showed inhibition of interleukin-6 (2.5-fold), tumour necrosis factor-α (2.2-fold) and CXCL-5 (3-fold) levels compared to wild-type (WT) cells. Further, RANKL stimulation significantly increased p-STAT6 expression (5.5-fold) in WT cells, but no significant effect was observed in NFAM1-KD cells. However, no changes were detected in signal transducer and activator of transcription 3 levels in either of cell groups. Interestingly, NFAM1-KD suppressed the RANKL stimulated c-fos, p-c-Jun and c-Jun N-terminal kinase (JNK) activity in preosteoclasts. We further showed that the suppression of JNK activity is through inhibition of p-SAPK/JNK in these cells. In addition, NFATc1 expression, a critical transcription factor associated with osteoclastogenesis is significantly inhibited in NFAM1-KD preosteoclast cells. Interestingly, NFAM1 inhibition suppressed the OCL differentiation and bone resorption capacity in mouse bone marrow cell cultures. We also demonstrated inhibition of tartrate-resistant acid phosphatase expression in RANKL stimulated NFAM1-KD preosteoclast cells. Thus, our results suggest that NFAM1 control SAPK/JNK signaling to modulate osteoclast differentiation and bone resorption.


Asunto(s)
Resorción Ósea/patología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Osteoclastos/citología , Osteogénesis , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/fisiología , Regulación de la Expresión Génica , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Fosforilación
8.
Periodontol 2000 ; 86(1): 157-187, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33690918

RESUMEN

Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Huesos , Homeostasis , Humanos , Periodontitis/terapia , Periodoncio
9.
J Cell Physiol ; 235(2): 1663-1673, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31309556

RESUMEN

Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation. OSCC cells show resistance to tumor necrosis factor related apoptosis inducing ligand (TRAIL) treatment. Therefore, we hypothesize that RANKL promotes resistance for TRAIL induction of OSCC apoptotic cell death. In this study, SCC14A and SCC74A cells cultured with TRAIL revealed high-level expression of RANKL which increased resistance to TRAIL inhibition of tumor cell proliferation. RANKL stimulation inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive staining in TRAIL-treated cells. CRISPR/Cas-9 knockout of RANKL (RANKL-KO) increased caspase-9, caspase-3 activity and cytochrome c release in OSCC cells. RANKL inhibited proapoptotic proteins BAD and BAX expression. TRAIL treatment suppressed the SQSTM1/p62 and RANKL restored the expression. Interestingly, RANKL alone significantly increased proteasome activity. RANKL-KO in OSCC cells inhibited autophagic activity as evidenced by decreased light chain 3B-II and beclin-1 expression. Thus, RANKL stimulation of OSCC tumor cells triggered resistance for TRAIL-induced OSCC cell death. Taken together, blockade of RANKL may inhibit OSCC tumor progression and enhance the potential of TRAIL induced OSCC tumor cell apoptosis.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Ligando RANK/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Sistemas CRISPR-Cas , Caspasa 1 , Muerte Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Mitocondrias/metabolismo , Neoplasias de la Boca , Ligando RANK/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
10.
Am J Pathol ; 189(2): 370-390, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30660331

RESUMEN

Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.


Asunto(s)
Antibacterianos/efectos adversos , Microbioma Gastrointestinal , Osteogénesis , Maduración Sexual , Animales , Antibacterianos/farmacología , Quimiocina CCL3/inmunología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Masculino , Mesenterio/inmunología , Mesenterio/patología , Ratones , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Osteoclastos/inmunología , Osteoclastos/patología , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Maduración Sexual/efectos de los fármacos , Maduración Sexual/inmunología , Bazo/inmunología , Bazo/patología , Factor de Necrosis Tumoral alfa/inmunología
11.
J Cell Biochem ; 120(4): 6264-6276, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30378157

RESUMEN

Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50 s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Triterpenos/farmacología , Calpaína/metabolismo , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
12.
J Cell Physiol ; 233(8): 6125-6134, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29323724

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common malignancy among oral cancers and shows potent activity for local bone invasion. Receptor activator of nuclear factor κB (RANK) ligand (RANKL) is critical for bone-resorbing osteoclast formation. We previously demonstrated that OSCC tumor cells express high levels of RANKL. In this study, confocal microscopy demonstrated RANKL specific receptor, RANK expression in OSCC tumor cell lines (SCC1, SCC12, and SCC14a). We also confirmed the expression of RANK and RANKL in primary human OSCC tumor specimens. However, regulatory mechanisms of RANKL expression and a functional role in OSCC tumor progression are unclear. Interestingly, we identified that RANKL expression is autoregulated in OSCC tumor cells. The RANKL specific inhibitor osteoprotegerin (OPG) treatment to OSCC cells inhibits autoregulation of RANKL expression. Further, we showed conditioned media from RANKL CRISPR-Cas9 knockout OSCC cells significantly decreased osteoclast formation and bone resorption activity. In addition, RANKL increases OSCC tumor cell proliferation. RANKL treatment to OSCC cells demonstrated a dose-dependent increase in RANK intracellular adaptor protein, TRAF6 expression, and activation of IKK and IκB signaling molecules. We further identified that transcription factor NFATc2 mediates autoregulation of RANKL expression in OSCC cells. Thus, our results implicate RANKL autoregulation as a novel mechanism that facilitates OSCC tumor cell growth and osteoclast differentiation/bone destruction.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Homeostasis/fisiología , Neoplasias de la Boca/metabolismo , Ligando RANK/metabolismo , Animales , Resorción Ósea/metabolismo , Huesos/efectos de los fármacos , Sistemas CRISPR-Cas/fisiología , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo
13.
J Cell Biochem ; 119(2): 2212-2221, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28857256

RESUMEN

Melanoma represents an ever-increasing problem in the western world as incidence rates continue to climb. Though manageable during early stages, late stage metastatic disease is highly resistant to current intervention. We have previously shown that gamma-interferon-inducible lysosomal thiol-reductase (GILT) enhances HLA class II antigen processing and immune detection of human melanoma cells. Here we report that GILT expression inhibits a potential target, paired box-3 (PAX-3) protein, in late stage human metastatic melanoma. We also show that GILT transfection or induction by IFN-γ, decreases PAX-3 protein expression while upregulating the expression of Daxx, which is also a repressor of PAX-3. Confocal microscopic analysis demonstrated that GILT co-localizes with PAX-3 protein, but not with Daxx within melanoma cells. Immunoprecipitation and immunoblotting studies suggest that GILT expression negatively regulates PAX-3 through the autophagy pathway, potentially resulting in increased susceptibility to conventional treatment in the form of chemotherapy or radiotherapy. While high-dose radiation is a common treatment for melanoma patients, our data suggest that GILT expression significantly increased the susceptibility of melanoma cells to low-dose radiation therapy via upregulation of tumor suppressor protein p53. Overall, these data suggest that GILT has multiple roles in inducing human melanoma cells as better targets for radiation and immunotherapy.


Asunto(s)
Melanoma/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Factor de Transcripción PAX3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Línea Celular Tumoral , Proteínas Co-Represoras , Regulación Neoplásica de la Expresión Génica , Humanos , Lisosomas/metabolismo , Melanoma/patología , Melanoma/radioterapia , Chaperonas Moleculares , Estadificación de Neoplasias , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
14.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38131122

RESUMEN

Post-traumatic stress disorder (PTSD) is associated with osteopenia, osteoporosis and increased fracture risk in the clinical population. Yet, the development of preclinical models to study PTSD-induced bone loss remains limited. In this study, we present a previously unreported model of PTSD in adult female C57BL/6 mice, by employing inescapable foot shock and social isolation, that demonstrates high face and construct validity. A subset of mice exposed to this paradigm (i.e. PTSD mice) display long-term alterations in behavioral and inflammatory indices. Using three-dimensional morphometric calculations, cyclic reference point indentation (cRPI) testing and histological analyses, we find that PTSD mice exhibit loss of trabecular bone, altered bone material quality, and aberrant changes in bone tissue architecture and cellular activity. This adult murine model of PTSD exhibits clinically relevant changes in bone physiology and provides a valuable tool for investigating the cellular and molecular mechanisms underlying PTSD-induced bone loss.


Asunto(s)
Trastornos por Estrés Postraumático , Femenino , Ratones , Animales , Trastornos por Estrés Postraumático/complicaciones , Ratones Endogámicos C57BL , Fenotipo , Huesos , Modelos Animales de Enfermedad
15.
JBMR Plus ; 7(8): e10775, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37614301

RESUMEN

Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Bone Rep ; 18: 101662, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36860797

RESUMEN

Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.

17.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36413391

RESUMEN

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.


Asunto(s)
Minociclina , Osteogénesis , Animales , Ratones , Antibacterianos/efectos adversos , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Minociclina/farmacología
18.
Bone ; 159: 116377, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35248788

RESUMEN

Tetracyclines are a broad-spectrum class of antibiotics that have unclear actions with potentially lasting effects on bone metabolism. Initially isolated from Streptomyces, tetracycline proved to be an effective treatment for Gram +/- infections. The emergence of resistant bacterial strains commanded the development of later generation agents, including minocycline, doxycycline, tigecycline, sarecycline, omadacycline, and eravacycline. In 1957, it was realized that tetracyclines act as bone fluorochrome labels due to their high affinity for the bone mineral matrix. Over the course of the next decade, researchers discerned that these compounds are retained in the bone matrix at high levels after the termination of antibiotic therapy. Studies during this period provided evidence that tetracyclines could disrupt prenatal and early postnatal skeletal development. Currently, tetracyclines are most commonly prescribed as a long-term systemic therapy for the treatment of acne in healthy adolescents and young adults. Surprisingly, the impact of tetracyclines on physiologic bone modeling/remodeling is largely unknown. This article provides an overview of the pharmacology of tetracycline drugs, summarizes current knowledge about the impact of these agents on skeletal development and homeostasis, and reviews prior work targeting tetracyclines' effects on bone cell physiology. The need for future research to elucidate unclear effects of tetracyclines on the skeleton is addressed, including drug retention/release mechanisms from the bone matrix, signaling mechanisms at bone cells, the impact of newer third generation tetracycline antibiotics, and the role of the gut-bone axis.


Asunto(s)
Acné Vulgar , Tetraciclina , Acné Vulgar/tratamiento farmacológico , Adolescente , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Minociclina/farmacología , Minociclina/uso terapéutico , Tetraciclina/uso terapéutico
19.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35077397

RESUMEN

Commensal microbes critically regulate skeletal homeostasis, yet the impact of specific microbiota communities on osteoimmune response mechanisms is unknown. To discern osteoimmunomodulatory effects imparted by the commensal oral microbiota that are distinct from the systemic microbiota, osteoimmunology studies were performed in both alveolar bone and nonoral skeletal sites of specific pathogen-free (SPF) versus germ-free (GF) mice and SPF mice subjected to saline versus chlorhexidine oral rinses. SPF versus GF mice had reduced cortical/trabecular bone and an enhanced pro-osteoclastic phenotype in alveolar bone. TLR signaling and Th17 cells that have known pro-osteoclastic actions were increased in alveolar BM, but not long BM, of SPF versus GF mice. MHC II antigen presentation genes and activated DCs and CD4+ T cells were elevated in alveolar BM, but not long BM, of SPF versus GF mice. These findings were substantiated by in vitro allostimulation studies demonstrating increased activated DCs derived from alveolar BM, but not long BM, of SPF versus GF mice. Chlorhexidine antiseptic rinse depleted the oral, but not gut, bacteriome in SPF mice. Findings from saline- versus chlorhexidine-treated SPF mice corroborated outcomes from SPF versus GF mice, which reveals that the commensal oral microbiota imparts osteoimmunomodulatory effects separate from the systemic microbiome.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes/inmunología , Boca/microbiología , Osteoclastos/inmunología , Organismos Libres de Patógenos Específicos/inmunología , Animales , Homeostasis/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales
20.
JBMR Plus ; 4(3): e10338, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32161843

RESUMEN

The commensal gut microbiota critically regulates immunomodulatory processes that influence normal skeletal growth and maturation. However, the influence of specific microbes on commensal gut microbiota osteoimmunoregulatory actions is unknown. We have shown previously that the commensal gut microbiota enhances TH17/IL17A immune response effects in marrow and liver that have procatabolic/antianabolic actions in the skeleton. Segmented filamentous bacteria (SFB), a specific commensal gut bacterium within phylum Firmicutes, potently induces TH17/IL17A-mediated immunity. The study purpose was to delineate the influence of SFB on commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal development. Two murine models were utilized: SFB-monoassociated mice versus germ-free (GF) mice and specific-pathogen-free (SPF) mice +/- SFB. SFB colonization was validated by 16S rDNA analysis, and SFB-induced TH17/IL17A immunity was confirmed by upregulation of Il17a in ileum and IL17A in serum. SFB-colonized mice had an osteopenic trabecular bone phenotype, which was attributed to SFB actions suppressing osteoblastogenesis and enhancing osteoclastogenesis. Intriguingly, SFB-colonized mice had increased expression of proinflammatory chemokines and acute-phase reactants in the liver. Lipocalin-2 (LCN2), an acute-phase reactant and antimicrobial peptide, was substantially elevated in the liver and serum of SFB-colonized mice, which supports the notion that SFB regulation of commensal gut microbiota osteoimmunomodulatory actions are mediated in part through a gut-liver-bone axis. Proinflammatory TH17 and TH1 cells were increased in liver-draining lymph nodes of SFB-colonized mice, which further substantiates that SFB osteoimmune-response effects may be mediated through the liver. SFB-induction of Il17a in the gut and Lcn2 in the liver resulted in increased circulating levels of IL17A and LCN2. Recognizing that IL17A and LCN2 support osteoclastogenesis/suppress osteoblastogenesis, SFB actions impairing postpubertal skeletal development appear to be mediated through immunomodulatory effects in both the gut and liver. This research reveals that specific microbes critically impact commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal growth and maturation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA