RESUMEN
Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.
Asunto(s)
Equinococosis , Echinococcus multilocularis , Parásitos , Animales , Echinococcus multilocularis/fisiología , Equinococosis/epidemiología , Equinococosis/parasitología , Europa (Continente) , Ecosistema , Estadios del Ciclo de Vida , Cambio ClimáticoRESUMEN
The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance estimates are required to inform public debate and policy decisions, but obtaining them at biologically relevant scales is challenging. We developed a system for comprehensive population estimation across the Italian alpine region (100,000 km2 ), involving 1513 trained operators representing 160 institutions. This extensive network allowed for coordinated genetic sample collection and landscape-level spatial capture-recapture analyses that transcended administrative boundaries to produce the first estimates of key parameters for wolf population status assessment. Wolf abundance was estimated at 952 individuals (95% credible interval 816-1120) and 135 reproductive units (i.e., packs) (95% credible interval 112-165). We also estimated that mature individuals accounted for 33-45% of the entire population. The monitoring effort was spatially estimated thereby overcoming an important limitation of citizen science data. This is an important approach for promoting wolf-human coexistence based on wolf abundance monitoring and an endorsement of large-scale harmonized conservation practices.
Una estrategia multidisciplinaria para la estimación del tamaño poblacional de los lobos para la conservación a largo plazo Resumen El lobo (Canis lupus) está entre las especies de fauna más controversiales. Se requieren estimaciones de abundancia para informar al debate público y las decisiones políticas, pero es un reto obtenerlos en escalas con relevancia biológica. Desarrollamos un sistema para la estimación completa de la población en la región alpina de Italia (100,000 km2 ), con la participación de 1,513 operadores entrenados que representan a 160 instituciones. Esta red extensa permitió una colecta coordinada de muestras genéticas y análisis de captura-recaptura espacial que trascendieron las fronteras administrativas para así producir las primeras estimaciones de los parámetros clave para la evaluación del estado de la población de los lobos. Se estimó la abundancia en 952 individuos (95% intervalo de confianza 816-1120) y 135 unidades reproductivas (es decir, manadas) (95% intervalo de confianza 112-165). También estimamos que los individuos maduros representaban el 33-45% de toda la población. El esfuerzo de monitoreo se estimó espacialmente, por lo que sobrepasó una limitación importante de la ciencia ciudadana. Esta estrategia es importante para promover la coexistencia entre lobos y humanos con base en el monitoreo de la abundancia y el apoyo a las prácticas armonizadas de conservación a gran escala.
Asunto(s)
Lobos , Animales , Humanos , Lobos/genética , Conservación de los Recursos Naturales , Densidad de Población , Animales SalvajesRESUMEN
The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into "systems." Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation ("zonal raciation"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.
Asunto(s)
Centrómero , Translocación Genética , Ratones , Animales , Humanos , Filogenia , Centrómero/genética , Cariotipificación , Cariotipo , Translocación Genética/genética , ItaliaRESUMEN
Directly-transmitted rodent-borne zoonotic viruses, such as lymphocytic choriomeningitis virus (LCMV) can cause nervous system infections. Rodent-borne Ljungan virus (LV) is considered potentially zoonotic possibly causing neurological symptoms. Our objective was to understand the role of these two viruses compared to other pathogens in causing neurological infections in Finnish patients. Routine screening data were available for 400 patients aged 5-50 years, collected from December 2013 to December 2014 with suspected neurological infection. Depending on symptoms, patients were variously tested for herpesviruses, enteroviruses, varicella zoster virus, and Mycoplasma pneumoniae, while those suspected of tick bite were further tested for Borrelia spp. and tick-borne encephalitis virus using antibody and/or nucleic acid tests. For 380 patients, we also screened the RNA and antibody prevalence of LCMV and LV in order to test if either of these viruses were the causative agent. Data collected indicated that the causative microbial agent was confirmed in only 15.5% of all Finnish patients with neurological symptoms, with M. pneumoniae (26 cases) being the most common causative agent found in sera, whereas Borrelia spp. (15), herpes simplex viruses (7), and enteroviruses (5) were the most common agents confirmed in the CSF. The seroprevalences for LV and LCMV were 33.8% and 5.0%, respectively, but no samples were PCR-positive. In this study, M. pneumoniae and Borrelia spp. were the most common causative agents of neurological infections in Finland. No LCMV or LV infections were detected. We conclude there was no association of LV with neurological diseases in this patient cohort.
Asunto(s)
Virus de la Coriomeningitis Linfocítica/aislamiento & purificación , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/virología , Parechovirus/aislamiento & purificación , Zoonosis/epidemiología , Adolescente , Adulto , Animales , Niño , Preescolar , Enterovirus/aislamiento & purificación , Femenino , Finlandia/epidemiología , Humanos , Coriomeningitis Linfocítica/líquido cefalorraquídeo , Coriomeningitis Linfocítica/epidemiología , Masculino , Persona de Mediana Edad , Mycoplasma pneumoniae/aislamiento & purificación , Infecciones por Picornaviridae/líquido cefalorraquídeo , Infecciones por Picornaviridae/epidemiología , Roedores , Estudios Seroepidemiológicos , Simplexvirus/aislamiento & purificación , Adulto Joven , Zoonosis/virologíaRESUMEN
A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.
Asunto(s)
Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Adaptación Fisiológica/genética , Alelos , Animales , Evolución Biológica , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Femenino , Variación Genética , Genética de Población , Masculino , Ratones , Modelos Genéticos , Mutación , Selección GenéticaRESUMEN
Stochastic processes play an important role in the infectious disease dynamics of wildlife, especially in species subject to large population oscillations. Here, we study the case of a free ranging population of yellow-necked mice (Apodemus flavicollis) in northern Italy, where circulation of Dobrava-Belgrade hantavirus (DOBV) has been detected intermittently since 2001, until an outbreak emerged in 2010. We analysed the transmission dynamics of the recent outbreak using a computational model that accounts for seasonal changes of the host population and territorial behaviour. Model parameters were informed by capture-mark-recapture data collected over 14 years and longitudinal seroprevalence data from 2010 to 2013. The intermittent observation of DOBV before 2010 can be interpreted as repeated stochastic fadeouts after multiple introductions of infectious rodents migrating from neighbouring areas. We estimated that only 20% of introductions in a naïve host population results in sustained transmission after 2 years, despite an effective reproduction number well above the epidemic threshold (mean 4·5, 95% credible intervals, CI: 0·65-15·8). Following the 2010 outbreak, DOBV has become endemic in the study area, but we predict a constant probability of about 4·7% per year that infection dies out, following large population drops in winter. In the absence of stochastic fadeout, viral prevalence is predicted to continue its growth to an oscillating equilibrium around a value of 24% (95% CI: 3-57). We presented an example of invasion dynamics of a zoonotic virus where stochastic fadeout have played a major role and may induce future extinction of the endemic infection.
Asunto(s)
Brotes de Enfermedades/veterinaria , Infecciones por Hantavirus/veterinaria , Murinae , Orthohantavirus/fisiología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/transmisión , Animales , Femenino , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Italia , Estudios Longitudinales , Masculino , Modelos Teóricos , Dinámica Poblacional , Prevalencia , Enfermedades de los Roedores/virología , Estudios Seroepidemiológicos , Procesos EstocásticosRESUMEN
The importance of chromosomal rearrangements for speciation can be inferred from studies of genetic exchange between hybridising chromosomal races within species. Reduced fertility or recombination suppression in karyotypic hybrids has the potential to maintain or promote genetic differentiation in genomic regions near rearrangement breakpoints. We studied genetic exchange between two hybridising groups of chromosomal races of house mouse in Upper Valtellina (Lombardy, Italy), using microsatellites. These groups differ by Robertsonian fusions and/or whole-arm reciprocal translocations such that F1 hybrids have a chain-of-five meiotic configuration. Previous studies showed genetic differentiation in two chromosomes in the chain-of-five (10 and 12) close to their centromeres (i.e. the rearrangement breakpoints); we have shown here that the centromeric regions of the other two chromosomes in the chain (2 and 8) are similarly differentiated. The internal chromosomes of the chain (8 and 12) show the greatest differentiation, which may reflect pairing and recombination properties of internal and external elements in a meiotic chain. Importantly, we found that centromeric regions of some non-rearranged chromosomes also showed genetic differentiation between the hybridising groups, indicating a complex interplay between chromosomal rearrangements and other parts of the genome in maintaining or promoting differentiation and potentially driving speciation between chromosomal races.
Asunto(s)
Especiación Genética , Hibridación Genética/genética , Repeticiones de Microsatélite/genética , Modelos Genéticos , Recombinación Genética/genética , Animales , Cromosomas/genética , Variación Genética , Genética de Población , Cariotipo , RatonesRESUMEN
The first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss-Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion. The metacentric races are characterized by highly reduced diploid numbers (2n = 22-26) resulting from Robertsonian fusions, perhaps modified by whole-arm reciprocal translocations. The races hybridize and the whole Poschiavo-Valtellina area can be considered a "hybrid zone." The studies of this area have provided insights into origin of races within hybrid zones, gene flow within hybrid zones and the possibility of speciation in hybrid zones. This provides a case study of how chromosomal rearrangements may impact the genetic structure of populations and their diversification.
Asunto(s)
Cromosomas de los Mamíferos , Variación Genética , Genética de Población , Hibridación Genética , Animales , Bandeo Cromosómico , Evolución Molecular , Femenino , Masculino , Ratones , Modelos GenéticosRESUMEN
Within species, populations differing by chromosomal rearrangements ("chromosomal races") may become reproductively isolated in association with reduced hybrid fertility due to meiotic aberrations. Speciation is also possible if hybridizing chromosomal races accumulate genetic differences because of reduced meiotic recombination in the heterozygous configuration in hybrids. Here, we examine recombination in pure races and hybrids within a model system for chromosomal speciation: the hybridization of the Poschiavo (CHPO) and Upper Valtellina (IUVA) chromosomal races of house mouse in Upper Valtellina, Italy. These races differ by Robertsonian fusions/whole-arm reciprocal translocations, such that hybrids produce a pentavalent meiotic configuration. We determined the number and position of the recombination points (using an antibody against the MutL homolog 1 [MLH1] protein) on synaptonemal complexes at pachytene in laboratory-reared CHPO, IUVA, and hybrid males, analyzing at least 112 spermatocytes per karyotypic group, up to a total of 534 spermatocytes. The mean ± standard deviation numbers of MLH1 foci per spermatocyte were 22.2 ± 3.2, 20.1 ± 2.9, 20.7 ± 2.3, and 21.9 ± 2.9 for CHPO, IUVA, CHPO × IUVA, and IUVA × CHPO, respectively. Altogether, 10,146 chromosome arms were examined, allowing multiple comparisons. Overall, recombination events were more frequently distal than proximal or interstitial. The average number of proximal MLH1 foci per chromosome arm decreased going from telocentric to metacentric bivalents to pentavalents (when present), which (together with other factors) influenced the average number of MLH1 foci per cell between CHPO, IUVA, and hybrid mice. The low frequency of proximal recombination in pentavalents of CHPO-IUVA hybrids may promote reproductive isolation between the CHPO and IUVA races, when coupled with reduced hybrid unfitness.
Asunto(s)
Cromosomas de los Mamíferos , Recombinación Genética , Animales , Análisis Citogenético , Femenino , Sitios Genéticos , Hibridación Genética , Cariotipo , Masculino , Meiosis , Ratones , Fase Paquiteno , Espermatocitos/metabolismoRESUMEN
Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.
Asunto(s)
Ecosistema , Microbiota , Animales , ADN Bacteriano/genética , ADN/genética , Heces , Suelo , ARN Ribosómico 16S/genética , Mamíferos/genéticaRESUMEN
Although male and female mammals differ in biological traits and functional needs, the contribution of this sexual dimorphism to variations in gut bacteria and fungi (gut microbiota) in relation to habitat type has not been fully examined. To understand whether the combination of sex and habitat affects gut microbiota variation, we analyzed 40 fecal samples of wild yellow baboons (Papio cynocephalus) living in contrasting habitat types (intact, well-protected vs. fragmented, less protected forests) in the Udzungwa Mountains of Tanzania. Sex determination was performed using the marker genes SRY (Sex-determining Region Y) and DDX3X-DDX3Y (DEAD-Box Helicase 3). Samples were attributed to 34 individuals (19 females and 15 males) belonging to five social groups. Combining the results of sex determination with two amplicon sequencing datasets on bacterial (V1-V3 region of the 16S rRNA gene) and fungal (ITS2) gut communities, we found that overall, baboon females had a significantly higher gut bacterial richness compared to males. Beta diversity estimates indicated that bacterial composition was significantly different between males and females, and this was true for individuals from both well- and less protected forests. Our results highlight the combined role of sex and habitat type in shaping variation in gut microbial communities in wild non-human primates.
Asunto(s)
Microbioma Gastrointestinal , Papio cynocephalus , Femenino , Masculino , Animales , Papio cynocephalus/genética , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Genes sry , Bosques , Papio , MamíferosRESUMEN
The leafhopper genus Arboridia includes several species that feed on Vitis vinifera and cause leaf chlorosis. We report the first alien Arboridia infestation in Italy in 2021 in an Apulian vineyard. To confirm the taxonomic status of the species responsible for crop damage, and reconstruct its demographic history, we barcoded individuals from Apulia together with Arboridia spp. from Crete (Greece), A. adanae from Central Turkey and other specimens of the presumed sister species, A. dalmatina from Dalmatia (Croatia). Molecular phylogenies and barcoding gap analysis identified clades not associated with sampling locations. This result is incongruent with classical specimen assignment and is further supported by morphological analyses, which did not reveal significant differences among the populations. Therefore, we propose A. dalmatina as a junior synonym of A. adanae, which would become the only grapevine-related Arboridia species in the eastern Mediterranean. To further characterise A. adanae evolution, we performed a molecular clock analysis that suggested a radiation during the Pleistocene glaciations. Finally, to assess whether the Apulian individuals carried microorganisms of agricultural relevance, we sequenced their bacterial microbiota using 16S rRNA amplicon sequencing identifying three phytopathogens not generally associated with Arboridia activities as well as Wolbachia in one Apulian haplogroup. We discuss the agricultural implications of this infestation.
Asunto(s)
Hemípteros , Especies Introducidas , Humanos , Animales , ARN Ribosómico 16S/genética , Filogenia , GreciaRESUMEN
Ljungan virus (LV, genus Parechovirus, family Picornaviridae) is considered currently to be a rodent-borne virus. Despite suggested human disease associations, its zoonotic potential remains unclear. To date, LV antibody prevalence in both humans and rodents has not been studied. In this study, two different LV immunofluorescence assays (LV IFAs) were developed with LV genotypes 1 (LV strain 87-012G) and 2 (LV strain 145SLG), and cross-neutralization and -reaction studies were carried out with LV strain 145SLG. Finally, a panel of 37 Finnish sera was screened for anti-LV antibodies using two different LV IFAs (LV 145SLG and LV 87-012G) and a neutralization (NT) assay (LV 145SLG), and 50 samples from Myodes glareolus by LV IFA (LV 145SLG). The LV seroprevalence study showed 38% and 18% positivity in humans and M. glareolus, respectively. LV IFAs and NT assays were compared, and the results were in good agreement. The data are the first evidence of humans and rodents coming into contact with LV in Finland. Additional studies are required in order to acquire a better understanding of the prevalence, epidemiological patterns and possible disease association of LV infections.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Parechovirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Arvicolinae , Reacciones Cruzadas , Femenino , Finlandia , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Adulto JovenRESUMEN
PCR diagnostics detected 100% prevalence of Helicobacter in 425 wild house mice (Mus musculus) from across central Europe. Of seven species identified, the five most frequent were Helicobacter rodentium (78%), H. typhlonius (53%), H. hepaticus (41%), H. bilis (30%), and H. muridarum (1%). Double infections were more common (42%) than single (30%) and triple (21%) infections. Wild house mice could be considered potential reservoirs of Helicobacter strains for both humans and other vertebrates.
Asunto(s)
Animales Salvajes/microbiología , Infecciones por Helicobacter/veterinaria , Helicobacter/clasificación , Helicobacter/aislamiento & purificación , Animales , Análisis por Conglomerados , Coinfección/microbiología , Coinfección/veterinaria , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Helicobacter/genética , Infecciones por Helicobacter/microbiología , Ratones , Datos de Secuencia Molecular , Filogenia , Prevalencia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
An assessment of the genetic diversity and structure of a population is essential for designing recovery plans for threatened species. Italy hosts two brown bear populations, Ursus arctos marsicanus (Uam), endemic to the Apennines of central Italy, and Ursus arctos arctos (Uaa), in the Italian Alps. Both populations are endangered and occasionally involved in human-wildlife conflict; thus, detailed management plans have been in place for several decades, including genetic monitoring. Here, we propose a simple cost-effective microsatellite-based protocol for the management of populations with low genetic variation. We sampled 22 Uam and 22 Uaa individuals and analyzed a total of 32 microsatellite loci in order to evaluate their applicability in individual identification. Based on genetic variability estimates, we compared data from four different STR marker sets, to evaluate the optimal settings in long-term monitoring projects. Allelic richness and gene diversity were the highest for the Uaa population, whereas depleted genetic variability was noted for the Uam population, which should be regarded as a conservation priority. Our results identified the most effective STR sets for the estimation of genetic diversity and individual discrimination in Uam (9 loci, PIC 0.45; PID 2.0 × 10-5), and Uaa (12 loci, PIC 0.64; PID 6.9 × 10-11) populations, which can easily be utilized by smaller laboratories to support local governments in regular population monitoring. The method we proposed to select the most variable markers could be adopted for the genetic characterization of other small and isolated populations.
Asunto(s)
Ursidae , Animales , Alelos , Italia , Repeticiones de Microsatélite/genética , Ursidae/genéticaRESUMEN
Surveillance of Echinococcus multilocularis at the edge of its range is hindered by fragmented distributional patterns and low prevalence in definitive hosts. Thus, tests with adequate levels of sensitivity are especially important for discriminating between infected and non-infected areas. In this study we reassessed the prevalence of E. multilocularis at the southern border of its distribution in Province of Bolzano (Alto Adige, northeastern Alps, Italy), to improve surveillance in wildlife and provide more accurate estimates of exposure risk. We compared the diagnostic test currently implemented for surveillance based on coproscopy and multiplex PCR (CMPCR) to a real-time quantitative PCR (qPCR) in 235 fox faeces collected in 2019 and 2020. The performances of the two tests were estimated using a scraping technique (SFCT) applied to the small intestines of a subsample (n = 123) of the same foxes as the reference standard. True prevalence was calculated and the sample size required by each faecal test for the detection of the parasite was then estimated. True prevalence of E. multilocularis in foxes (14.3%) was markedly higher than reported in the last decade, which was never more than 5% from 2012 to 2018 in the same area. In addition, qPCR showed a much higher sensitivity (83%) compared to CMPCR (21%) and agreement with the reference standard was far higher for qPCR (0.816) than CMPCR (0.298) meaning that for the latter protocol, a smaller sample size would be required to detect the disease. Alto Adige should be considered a highly endemic area. Routine surveillance on definitive hosts at the edges of the E. multilocularis distribution should be applied to smaller geographic areas, and rapid, sensitive diagnostic tools using directly host faeces, such as qPCR, should be adopted.
Asunto(s)
Equinococosis , Echinococcus multilocularis , Animales , Equinococosis/diagnóstico , Equinococosis/epidemiología , Equinococosis/veterinaria , Echinococcus multilocularis/genética , Heces/parasitología , Zorros/parasitología , PrevalenciaRESUMEN
Laboratory house mice (Mus musculus) with the XXY condition can be generated with ease and have been used as a biomedical model. However, although the XXY constitution has been described in humans and many domestic and wild mammal species, and a very large number of wild house mice have been karyotyped previously, no wild individuals of M. musculus with an XXY karyotype have ever been reported. Therefore, it is rather extraordinary that two wild XXY house mice were caught by us on two different farms in northern Italy in 2008. Except for the extra X chromosome, one male had a standard karyotype (2n = 40) and the other, the karyotype of the Cremona metacentric population (2n = 22). In this paper, the phenotype of these two individuals is described. Observations for both of these wild males agree with those of laboratory XXY mice, i.e., they had a normal body mass and appearance, but significantly smaller testes than normal, and no visible germ cells. The incidence of the XXY chromosome anomaly in wild mice (two among 5,123 wild mice surveyed by us and our colleagues, i.e., approximately 0.08% among wild-caught males) is intermediate between that found in male laboratory mice (approximately 0.04%) and that found in male humans (0.2%).
Asunto(s)
Animales Salvajes/genética , Síndrome de Klinefelter/genética , Animales , Fertilidad/genética , Células Germinativas/ultraestructura , Cariotipificación , Masculino , Ratones/genética , Fenotipo , Cromosoma XRESUMEN
The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1-V3 variable region of the 16S rRNA gene for bacteria and the ITS1-ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.
Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Helmintos/fisiología , Animales , Biodiversidad , Colobinae , Conservación de los Recursos Naturales , ADN Intergénico , Especies en Peligro de Extinción , Ambiente , Heces , Femenino , Bosques , Tracto Gastrointestinal/parasitología , Geografía , Masculino , ARN Ribosómico 16S/metabolismo , Especificidad de la EspecieRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0225142.].
RESUMEN
The gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.