Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 27(68): 17240-17254, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34608688

RESUMEN

We present a mechanistic study on the formation of an active ligand layer over Pd(111), turning the catalytic surface highly active and selective in partial hydrogenation of an α,ß-unsaturated aldehyde acrolein. Specifically, we investigate the chemical composition of a ligand layer consisting of allyl cyanide deposited on Pd(111) and its dynamic changes under the hydrogenation conditions. On pristine surface, allyl cyanide largely retains its chemical structure and forms a layer of molecular species with the CN bond oriented nearly parallel to the underlying metal. In the presence of hydrogen, the chemical composition of allyl cyanide strongly changes. At 100 K, allyl cyanide transforms to unsaturated imine species, containing the C=C and C=N double bonds. At increasing temperatures, these species undergo two competing reaction pathways. First, the C=C bond become hydrogenated and the stable N-butylimine species are produced. In the competing pathway, the unsaturated imine reacts with hydrogen to fully hydrogenate the imine group and produce butylamine. The latter species are unstable under the hydrogenation reaction conditions and desorb from the surface, while the N-butylimine adsorbates formed in the first reaction pathway remain adsorbed and act as an active ligand layer in selective hydrogenation of acrolein.

2.
Angew Chem Int Ed Engl ; 60(30): 16349-16354, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34008906

RESUMEN

We present a mechanistic study on the formation and dynamic changes of a ligand-based heterogeneous Pd catalyst for chemoselective hydrogenation of α,ß-unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real-space microscopic and in-operando spectroscopic surface-sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N-butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic-level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA