Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 39(49): 17903-17920, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039288

RESUMEN

Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.


Asunto(s)
Antozoos , Restauración y Remediación Ambiental , Hidrogeles , Animales , Adhesivos/química , Dihidroxifenilalanina/química , Ecosistema , Hidrogeles/química , Lisina , Péptidos
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982742

RESUMEN

Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Metanfetamina/toxicidad , Metanfetamina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Mesencéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Adenosina Trifosfato/metabolismo , Diferenciación Celular
3.
Nano Lett ; 21(7): 2719-2729, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33492960

RESUMEN

We report about rationally designed ultrashort peptide bioinks, overcoming severe limitations in current bioprinting procedures. Bioprinting is increasingly relevant in tissue engineering, regenerative and personalized medicine due to its ability to fabricate complex tissue scaffolds through an automated deposition process. Printing stable large-scale constructs with high shape fidelity and enabling long-term cell survival are major challenges that most existing bioinks are unable to solve. Additionally, they require chemical or UV-cross-linking for the structure-solidifying process which compromises the encapsulated cells, resulting in restricted structure complexity and low cell viability. Using ultrashort peptide bioinks as ideal bodylike but synthetic material, we demonstrate an instant solidifying cell-embedding printing process via a sophisticated extrusion procedure under true physiological conditions and at cost-effective low bioink concentrations. Our printed large-scale cell constructs and the chondrogenic differentiation of printed mesenchymal stem cells point to the strong potential of the peptide bioinks for automated complex tissue fabrication.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Péptidos , Ingeniería de Tejidos , Andamios del Tejido
4.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293205

RESUMEN

The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Ratones , Animales , Femenino , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Fumarato de Quetiapina/farmacología , Fumarato de Quetiapina/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Mesencéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Adenosina Trifosfato/metabolismo , Receptores Dopaminérgicos/metabolismo
5.
Biomacromolecules ; 22(5): 2094-2106, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33908763

RESUMEN

The apparent rise of bone disorders demands advanced treatment protocols involving tissue engineering. Here, we describe self-assembling tetrapeptide scaffolds for the growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The rationally designed peptides are synthetic amphiphilic self-assembling peptides composed of four amino acids that are nontoxic. These tetrapeptides can quickly solidify to nanofibrous hydrogels that resemble the extracellular matrix and provide a three-dimensional (3D) environment for cells with suitable mechanical properties. Furthermore, we can easily tune the stiffness of these peptide hydrogels by just increasing the peptide concentration, thus providing a wide range of peptide hydrogels with different stiffnesses for 3D cell culture applications. Since successful bone regeneration requires both osteogenesis and vascularization, our scaffold was found to be able to promote angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. The results presented suggest that ultrashort peptide hydrogels are promising candidates for applications in bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Humanos , Hidrogeles/farmacología , Ingeniería de Tejidos , Andamios del Tejido
6.
Molecules ; 25(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187056

RESUMEN

Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Agregado de Proteínas , Enfermedad de Alzheimer/terapia , Secuencias de Aminoácidos , Amiloidosis/metabolismo , Amiloidosis/terapia , Animales , Antivirales/farmacología , Sitios de Unión , Péptidos de Penetración Celular/uso terapéutico , Humanos , Iones , Metales/química , Nanomedicina , Unión Proteica , Virosis/tratamiento farmacológico
7.
Proc Natl Acad Sci U S A ; 110(2): 519-24, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267112

RESUMEN

The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-ß-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-ß, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-ß, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed ß-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation.


Asunto(s)
Proteínas Amiloidogénicas/química , Amiloidosis/metabolismo , Modelos Moleculares , Péptidos/química , Conformación Proteica , Secuencia de Aminoácidos , Amiloide , Proteínas Amiloidogénicas/genética , Calcitonina , Dicroismo Circular , Humanos , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptidos/genética , Reología , Difracción de Rayos X
8.
Nano Lett ; 15(10): 6919-25, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26214046

RESUMEN

Printable scaffolds with adequate mechanical strength and stiffness are sought after to ensure viability of printed cells and tissues. We report the first peptide bioinks-lysine-containing hexapeptides that self-assemble into stable, nanofibrous three-dimensional hydrogels with unprecedented stiffness of up to 40 kPa. These biocompatible scaffolds support the three-dimensional culture of human stem cells and differentiation of primary cells into organotypic (gastrointestinal and skin) structures for high-throughput screening, diagnosis, and tissue engineering.


Asunto(s)
Nanofibras , Péptidos/química , Andamios del Tejido , Células CACO-2 , Humanos , Hidrogeles , Microscopía Electrónica de Rastreo
9.
PLoS Comput Biol ; 10(7): e1003718, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010703

RESUMEN

Self-association is a common phenomenon in biology and one that can have positive and negative impacts, from the construction of the architectural cytoskeleton of cells to the formation of fibrils in amyloid diseases. Understanding the nature and mechanisms of self-association is important for modulating these systems and in creating biologically-inspired materials. Here, we present a two-stage de novo peptide design framework that can generate novel self-associating peptide systems. The first stage uses a simulated multimeric template structure as input into the optimization-based Sequence Selection to generate low potential energy sequences. The second stage is a computational validation procedure that calculates Fold Specificity and/or Approximate Association Affinity (K*association) based on metrics that we have devised for multimeric systems. This framework was applied to the design of self-associating tripeptides using the known self-associating tripeptide, Ac-IVD, as a structural template. Six computationally predicted tripeptides (Ac-LVE, Ac-YYD, Ac-LLE, Ac-YLD, Ac-MYD, Ac-VIE) were chosen for experimental validation in order to illustrate the self-association outcomes predicted by the three metrics. Self-association and electron microscopy studies revealed that Ac-LLE formed bead-like microstructures, Ac-LVE and Ac-YYD formed fibrillar aggregates, Ac-VIE and Ac-MYD formed hydrogels, and Ac-YLD crystallized under ambient conditions. An X-ray crystallographic study was carried out on a single crystal of Ac-YLD, which revealed that each molecule adopts a ß-strand conformation that stack together to form parallel ß-sheets. As an additional validation of the approach, the hydrogel-forming sequences of Ac-MYD and Ac-VIE were shuffled. The shuffled sequences were computationally predicted to have lower K*association values and were experimentally verified to not form hydrogels. This illustrates the robustness of the framework in predicting self-associating tripeptides. We expect that this enhanced multimeric de novo peptide design framework will find future application in creating novel self-associating peptides based on unnatural amino acids, and inhibitor peptides of detrimental self-aggregating biological proteins.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Agregado de Proteínas , Multimerización de Proteína , Biología Computacional , Cristalografía por Rayos X , Hidrogel de Polietilenoglicol-Dimetacrilato , Simulación de Dinámica Molecular , Viscosidad
10.
Chem Soc Rev ; 43(15): 5326-45, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24781248

RESUMEN

Self-assembling amyloid-like peptides and proteins give rise to promising biomaterials with potential applications in many fields. Amyloid structures are formed by the process of molecular recognition and self-assembly, wherein a peptide or protein monomer spontaneously self-associates into dimers and oligomers and subsequently into supramolecular aggregates, finally resulting in condensed fibrils. Mature amyloid fibrils possess a quasi-crystalline structure featuring a characteristic fiber diffraction pattern and have well-defined properties, in contrast to many amorphous protein aggregates that arise when proteins misfold. Core sequences of four to seven amino acids have been identified within natural amyloid proteins. They are capable to form amyloid fibers and fibrils and have been used as amyloid model structures, simplifying the investigations on amyloid structures due to their small size. Recent studies have highlighted the use of self-assembled amyloid-based fibers as nanomaterials. Here, we discuss the latest advances and the major challenges in developing amyloids for future applications in nanotechnology and nanomedicine, with the focus on development of sensors to study protein-ligand interactions.


Asunto(s)
Amiloide , Bioingeniería , Nanoestructuras , Nanotecnología
11.
Proc Natl Acad Sci U S A ; 108(4): 1361-6, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21205900

RESUMEN

Many fatal neurodegenerative diseases such as Alzheimer's, Parkinson, the prion-related diseases, and non-neurodegenerative disorders such as type II diabetes are characterized by abnormal amyloid fiber aggregates, suggesting a common mechanism of pathogenesis. We have discovered that a class of systematically designed natural tri- to hexapeptides with a characteristic sequential motif can simulate the process of fiber assembly and further condensation to amyloid fibrils, probably via unexpected dimeric α-helical intermediate structures. The characteristic sequence motif of the novel peptide class consists of an aliphatic amino acid tail of decreasing hydrophobicity capped by a polar head. To our knowledge, the investigated aliphatic tripeptides are the shortest ever reported naturally occurring amino acid sequence that can adopt α-helical structure and promote amyloid formation. We propose the stepwise assembly process to be associated with characteristic conformational changes from random coil to α-helical intermediates terminating in cross-ß peptide structures. Circular dichroism and X-ray fiber diffraction analyses confirmed the concentration-dependent conformational changes of the peptides in water. Molecular dynamics simulating peptide behavior in water revealed monomer antiparallel pairing to dimer structures by complementary structural alignment that further aggregated and stably condensed into coiled fibers. The ultrasmall size and the dynamic facile assembly process make this novel peptide class an excellent model system for studying the mechanism of amyloidogenesis, its evolution and pathogenicity. The ability to modify the properties of the assembled structures under defined conditions will shed light on strategies to manipulate the pathogenic amyloid aggregates in order to prevent or control aggregate formation.


Asunto(s)
Péptidos beta-Amiloides/química , Oligopéptidos/química , Estructura Secundaria de Proteína , Agua/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/ultraestructura , Dicroismo Circular , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Difracción de Rayos X
12.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767378

RESUMEN

Ultrashort self-assembling peptides (SAPs) can spontaneously form nanofibers that resemble the extracellular matrix. These fibers allow the formation of hydrogels that are biocompatible, biodegradable, and non-immunogenic. We have previously proven that SAPs, when biofunctionalized with protein-derived motifs, can mimic the extracellular matrix characteristics that support colorectal organoid formation. These biofunctional peptide hydrogels retain the original parent peptide's mechanical properties, tunability, and printability while incorporating cues that allow cell-matrix interactions to increase cell adhesion. This paper presents the protocols needed to evaluate and characterize the effects of various biofunctional peptide hydrogels on cell adhesion and lumen formation using an adenocarcinoma cancer cell line able to form colorectal cancer organoids cost-effectively. These protocols will help evaluate biofunctional peptide hydrogel effects on cell adhesion and luminal formation using immunostaining and fluorescence image analysis. The cell line used in this study has been previously utilized for generating organoids in animal-derived matrices.


Asunto(s)
Neoplasias Colorrectales , Hidrogeles , Organoides , Péptidos , Organoides/citología , Humanos , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Hidrogeles/química , Péptidos/química , Nanofibras/química , Adenocarcinoma/patología , Matriz Extracelular/química , Adhesión Celular/fisiología
13.
ACS Nano ; 18(1): 164-177, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38133949

RESUMEN

The rechargeable aqueous Zn ion battery (AZIB) is considered a promising candidate for future energy storage applications due to its intrinsic safety features and low cost. However, Zn dendrites and side reactions (e.g., corrosion, hydrogen evolution reaction, and inactive side product (Zn hydroxide sulfate) formation) at the Zn metal anode have been serious obstacles to realizing a satisfactory AZIB performance. The application of gel electrolytes is a common strategy for suppressing these problems, but the normally used highly cross-linked polymer matrix (e.g., polyacrylamide (PAM)) brings additional difficulties for battery assembly and recycling. Herein, we have developed a gel electrolyte for Zn metal anode stabilization, where a peptide matrix, a highly biocompatible material, is used for gel construction. Various experiments and simulations elucidate the sulfate anion-assisted self-assembly gel formation and its effect in stabilizing Zn metal anodes. Unlike polymer gel electrolytes, the peptide gel electrolyte can reversibly transform between gel and liquid states, thus facilitating the gel-involved battery assembly and recycling. Furthermore, the peptide gel electrolyte provides fast Zn ion diffusion (comparable to conventional liquid electrolyte) while suppressing side reactions and dendrite growth, thus achieving highly stable Zn metal anodes as validated in various cell configurations. We believe that our concept of gel electrolyte design will inspire more future directions for Zn metal anode protection based on gel electrolyte design.

14.
Mar Pollut Bull ; 202: 116273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569302

RESUMEN

Coral reefs are home to a variety of species, and their preservation is a popular study area; however, monitoring them is a significant challenge, for which the use of robots offers a promising answer. The purpose of this study is to analyze the current techniques and tools employed in coral reef monitoring, with a focus on the role of robotics and its potential in transforming this sector. Using a systematic review methodology examining peer-reviewed literature across engineering and earth sciences from the Scopus database focusing on "robotics" and "coral reef" keywords, the article is divided into three sections: coral reef monitoring, robots in coral reef monitoring, and case studies. The initial findings indicated a variety of monitoring strategies, each with its own advantages and disadvantages. Case studies have also highlighted the global application of robotics in monitoring, emphasizing the challenges and opportunities unique to each context. Robotic interventions driven by artificial intelligence and machine learning have led to a new era in coral reef monitoring. Such developments not only improve monitoring but also support the conservation and restoration of these vulnerable ecosystems. Further research is required, particularly on robotic systems for monitoring coral nurseries and maximizing coral health in both indoor and open-sea settings.


Asunto(s)
Antozoos , Arrecifes de Coral , Monitoreo del Ambiente , Robótica , Monitoreo del Ambiente/métodos , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema
15.
ACS Bio Med Chem Au ; 4(1): 37-52, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38404747

RESUMEN

The tragic COVID-19 pandemic, which has seen a total of 655 million cases worldwide and a death toll of over 6.6 million seems finally tailing off. Even so, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise, the severity of which cannot be predicted in advance. This is concerning for the maintenance and stability of public health, since immune evasion and increased transmissibility may arise. Therefore, it is crucial to continue monitoring antibody responses to SARS-CoV-2 in the general population. As a complement to polymerase chain reaction tests, multiplex immunoassays are elegant tools that use individual protein or peptide antigens simultaneously to provide a high level of sensitivity and specificity. To further improve these aspects of SARS-CoV-2 antibody detection, as well as accuracy, we have developed an advanced serological peptide-based multiplex assay using antigen-fused peptide epitopes derived from both the spike and the nucleocapsid proteins. The significance of the epitopes selected for antibody detection has been verified by in silico molecular docking simulations between the peptide epitopes and reported SARS-CoV-2 antibodies. Peptides can be more easily and quickly modified and synthesized than full length proteins and can, therefore, be used in a more cost-effective manner. Three different fusion-epitope peptides (FEPs) were synthesized and tested by enzyme-linked immunosorbent assay (ELISA). A total of 145 blood serum samples were used, compromising 110 COVID-19 serum samples from COVID-19 patients and 35 negative control serum samples taken from COVID-19-free individuals before the outbreak. Interestingly, our data demonstrate that the sensitivity, specificity, and accuracy of the results for the FEP antigens are higher than for single peptide epitopes or mixtures of single peptide epitopes. Our FEP concept can be applied to different multiplex immunoassays testing not only for SARS-CoV-2 but also for various other pathogens. A significantly improved peptide-based serological assay may support the development of commercial point-of-care tests, such as lateral-flow-assays.

16.
Biomacromolecules ; 14(7): 2340-6, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23789819

RESUMEN

Polyethyleneimine (PEI) is widely regarded as one of the most efficient non-viral transfection agents commercially available. However, a key concern is its pronounced cytotoxicity, ascribed mainly to its high amine content and cationic charge density. Significant past efforts to mitigate its toxicity usually involved lengthy synthetic procedures. We now propose a simple strategy using hydrogen peroxide (H2O2) to oxidize the amine groups. PEI/DNA complexes were first formed before some amine groups were removed with H2O2. This reduced surface charge while the remaining cationic charges still allowed for efficient transfection. The DNA was not damaged and remained bound after oxidation. Furthermore, H2O2 was quantitatively removed with sodium pyruvate prior to cell culture. Oxidized complexes caused no cytotoxicity even at high polymer concentrations. Compared to non-oxidized complexes used at subtoxic doses, oxidized complexes mediated significantly more GFP expression. A key strength of this approach is its simplicity as it involves only simple mixing of solutions. This strategy promises to further realize the potential of using PEI for the delivery of nucleic acids or other cargos.


Asunto(s)
Polietileneimina/efectos adversos , Polietileneimina/química , Transfección , Línea Celular , ADN/química , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Propiedades de Superficie
17.
Int J Bioprint ; 9(4): 719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323500

RESUMEN

62Articular cartilage is a nonvascularized and poorly cellularized tissue with a low self-repair capacity. Therefore, damage to this tissue due to trauma or degenerative joint diseases such as osteoarthritis needs a high-end medical intervention. However, such interventions are costly, have limited healing capacity, and could impair patients' quality of life. In this regard, tissue engineering and three-dimensional (3D) bioprinting hold great potential. However, identifying suitable bioinks that are biocompatible, with the desired mechanical stiffness, and can be used under physiological conditions is still a challenge. In this study, we developed two tetrameric self-assembling ultrashort peptide bioinks that are chemically well-defined and can spontaneously form nanofibrous hydrogels under physiological conditions. The printability of the two ultrashort peptides was demonstrated; different shape constructs were printed with high shape fidelity and stability. Furthermore, the developed ultrashort peptide bioinks gave rise to constructs with different mechanical properties that could be used to guide stem cell differentiation toward specific lineages. Both ultrashort peptide bioinks demonstrated high biocompatibility and supported the chondrogenic differentiation of human mesenchymal stem cells. Additionally, the gene expression analysis of differentiated stem cells with the ultrashort peptide bioinks revealed articular cartilage extracellular matrix formation preference. Based on the different mechanical stiffness of the two ultrashort peptide bioinks, they can be used to fabricate cartilage tissue with different cartilaginous zones, including the articular and calcified cartilage zones, which are essential for engineered tissue integration.

18.
Int J Bioprint ; 9(1): 633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866082

RESUMEN

160Three-dimensional (3D) bioprinting systems, which are the prominent tools for biofabrication, should evolve around the cutting-edge technologies of tissue engineering. This is the case with organoid technology, which requires a plethora of new materials to evolve, including extracellular matrices with specific mechanical and biochemical properties. For a bioprinting system to facilitate organoid growth, it must be able to recreate an organ-like environment within the 3D construct. In this study, a well-established, self-assembling peptide system was employed to generate a laminin-like bioink to provide signals of cell adhesion and lumen formation in cancer stem cells. One bioink formulation led to the formation of lumen with outperforming characteristics, which showed good stability of the printed construct.

19.
Diagnostics (Basel) ; 13(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761360

RESUMEN

PURPOSE: Next-generation sequencing (NGS) technology detects specific mutations that can provide treatment opportunities for colorectal cancer (CRC) patients. PATIENTS AND METHODS: We analyzed the mutation frequencies of common actionable genes and their association with clinicopathological characteristics and oncologic outcomes using targeted NGS in 107 Saudi Arabian patients without a family history of CRC. RESULTS: Approximately 98% of patients had genetic alterations. Frequent mutations were observed in BRCA2 (79%), CHEK1 (78%), ATM (76%), PMS2 (76%), ATR (74%), and MYCL (73%). The APC gene was not included in the panel. Statistical analysis using the Cox proportional hazards model revealed an unusual positive association between poorly differentiated tumors and survival rates (p = 0.025). Although no significant univariate associations between specific mutations or overall mutation rate and overall survival were found, our preliminary analysis of the molecular markers for CRC in a predominantly Arab population can provide insights into the molecular pathways that play a significant role in the underlying disease progression. CONCLUSIONS: These results may help optimize personalized therapy when drugs specific to a patient's mutation profile have already been developed.

20.
ACS Appl Mater Interfaces ; 15(40): 46710-46720, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768145

RESUMEN

Nature-inspired smart materials offer numerous advantages over environmental friendliness and efficiency. Emulating the excellent adhesive properties of mussels foot proteins, where the lysine is in close proximity with the 3,4-dihydroxy-l-phenylalanine (DOPA), we report the synthesis of a novel photocurable peptide-based adhesive consisting exclusively of these two amino acids. Our adhesive is a highly concentrated aqueous solution of a monomer, a cross-linker, and a photoinitiator. Lap-shear adhesion measurements on plastic and glass surfaces and comparison with different types of commercial adhesives showed that the adhesive strength of our glue is comparable when applied in air and superior when used underwater. No toxicity of our adhesive was observed when the cytocompatibility on human dermal fibroblast cells was assessed. Preliminary experiments with various tissues and coral fragments showed that our adhesive could be applied to wound healing and coral reef restoration. Given the convenience of the facile synthesis, biocompatibility, ease of application underwater, and high adhesive strength, we expect that our adhesive may find application, but not limited, to the biomedical and environmental field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA