Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35098368

RESUMEN

Diverse taxa use Earth's magnetic field (i.e., magnetoreception) as a guide during long-distance navigation. However, despite decades of research, specific sensory mechanisms of magnetoreception remain unconfirmed. Necessarily, this has led to theoretical and computational work developing hypotheses of how animals may navigate using magnetoreception. One hypothesized strategy relies on an animal using combinations of magnetic intensity and inclination as a kind of signature to identify a specific region or location. Using these signatures, animals could use a waypoint-based navigation strategy. We show that this navigation strategy is biologically plausible using a close approximation of neural processing to successfully guide an agent in a simulated magnetic field. Moreover, we accomplish this strategy using a processing approach previously utilized for mechanoreception, suggesting processing of Earth's magnetic field may share features with the processing of other, more well-understood sensory systems. Taken together, our results suggest that both for the engineering of novel navigation systems and the study of animal magnetoreception, we should take lessons from other sensory systems.


Asunto(s)
Campos Magnéticos , Sensación , Animales , Magnetismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33759001

RESUMEN

Electroretinography (ERG) is a foundational method for assessing visual system physiology, but accurate ERG can be time- and labor-intensive, often involving manual adjustment of the wavelength and intensity of light stimuli and real-time comparison of physiological responses to inform those adjustments. Furthermore, current approaches to ERG often require expertise beyond that necessary for the electrophysiological preparation itself. To improve both the efficiency and accessibility of ERG, we designed an automated system for stimulus presentation and data acquisition. Here, we test this novel system's ability to accurately assess spectral sensitivity in the well-characterized visual system of the crayfish Procambarus clarkii using three approaches: the first, based on response magnitude, maximizes efficiency; the second is a well-established method we use to further validate our efficient approach's accuracy. Third, we explore the potential benefits of extensible automation using a method assessing the interplay between temporal acuity and spectral sensitivity. Using our system, we are able to acquire accurate results in ERG experiments quickly (testing the entire visible spectrum in 8 min, 30 s using our response magnitude approach). Moreover, data collected via all three methods yielded results consistent with each other and previous work on P. clarkii.


Asunto(s)
Astacoidea/fisiología , Electrorretinografía , Retina/fisiología , Procesamiento de Señales Asistido por Computador , Visión Ocular , Percepción Visual , Animales , Automatización de Laboratorios , Potenciales Evocados , Estimulación Luminosa , Reproducibilidad de los Resultados , Factores de Tiempo
3.
J Exp Biol ; 222(Pt 21)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31624099

RESUMEN

Snapping shrimp engage in heterospecific behavioral associations in which their partners, such as goby fish, help them avoid predators. It has been argued that snapping shrimp engage in these partnerships because their vision is impaired by their orbital hood, an extension of their carapace that covers their eyes. To examine this idea, we assessed the visual abilities of snapping shrimp. We found the big claw snapping shrimp, Alpheus heterochaelis, has spatial vision provided by compound eyes with reflecting superposition optics. These eyes view the world through an orbital hood that is 80-90% as transparent as seawater across visible wavelengths (400-700 nm). Through electroretinography and microspectrophotometry, we found the eyes of A. heterochaelis have a temporal sampling rate of >40 Hz and have at least two spectral classes of photoreceptors (λmax=500 and 519 nm). From the results of optomotor behavioral experiments, we estimate the eyes of A. heterochaelis provide spatial vision with an angular resolution of ∼8 deg. We conclude that snapping shrimp have competent visual systems, suggesting the function and evolution of their behavioral associations should be re-assessed and that these animals may communicate visually with conspecifics and heterospecific partners.


Asunto(s)
Decápodos/fisiología , Percepción Visual/fisiología , Animales , Electrorretinografía , Femenino , Masculino , Microespectrofotometría , Visión Ocular/fisiología
4.
J R Soc Interface ; 18(174): 20200887, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33402018

RESUMEN

Diverse taxa use Earth's magnetic field in combination with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. Several animals have the ability to use the inclination or tilt of magnetic field lines as a component of a magnetic compass sense that can be used to maintain migratory headings. In addition, a few animals are able to distinguish among different inclination angles and, in effect, exploit inclination as a surrogate for latitude. Little is known, however, about the role that magnetic inclination plays in guiding long-distance migrations. In this paper, we use an agent-based modelling approach to investigate whether an artificial agent can successfully execute a series of transequatorial migrations by using sequential measurements of magnetic inclination. The agent was tested with multiple navigation strategies in both present-day and reversed magnetic fields. The findings (i) demonstrate that sequential inclination measurements can enable migrations between the northern and southern hemispheres, and (ii) demonstrate that an inclination-based strategy can tolerate a reversed magnetic field, which could be useful in the development of autonomous engineered systems that must be robust to magnetic field changes. The findings also appear to be consistent with the results of some animal navigation experiments, although whether any animal exploits a strategy of using sequential measurements of inclination remains unknown.


Asunto(s)
Campos Magnéticos , Magnetismo , Migración Animal , Animales
5.
Sci Rep ; 5: 13383, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26307538

RESUMEN

The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration.


Asunto(s)
Nervio Coclear/lesiones , Nervio Coclear/patología , Pérdida Auditiva Central/patología , Células-Madre Neurales/patología , Neuroglía/patología , Células Madre/patología , Células Madre Adultas/patología , Animales , Células Cultivadas , Ratones , Ratones Transgénicos , Regeneración Nerviosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA