Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mutat ; 41(1): 291-298, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608546

RESUMEN

Cannabinoid receptor-1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease-associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety-like behavior. We used primary cell analysis of reporters carrying different allelic variants of the human ECR1 and found that human-specific C-allele variants of ECR1 (ECR1(C)) drove higher levels of CNR1prom activity in primary hippocampal cells than did the ancestral T-allele and demonstrated a differential response to CB1 agonism. We further demonstrate a role for the AP-1 transcription factor in driving higher ECR1(C) activity and evidence that the ancestral t-allele variant of ECR1 interacted with higher affinity with the insulator binding factor CTCF. The cell-specific approaches used in our study represent an important step in gaining a mechanistic understanding of the roles of noncoding polymorphic variation in disease and in the increasingly important field of cannabinoid pharmacogenetics.


Asunto(s)
Cannabinoides/farmacología , Secuencia Conservada , Elementos de Facilitación Genéticos , Farmacogenética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Receptor Cannabinoide CB1/genética , Células Cultivadas , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Genes Reporteros , Genes fos , Humanos , Especificidad de Órganos/genética , Farmacogenética/métodos
2.
Nutr Neurosci ; 23(4): 321-334, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30032721

RESUMEN

A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.


Asunto(s)
Ceramidas/biosíntesis , Encefalitis/metabolismo , Hipotálamo/metabolismo , Ácido Palmítico/administración & dosificación , Ácido Palmítico/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Encefalitis/inducido químicamente , Hipotálamo/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley
3.
Brain Behav Immun ; 61: 340-352, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27993690

RESUMEN

Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.


Asunto(s)
Histona Desacetilasas/genética , Hipotálamo/metabolismo , Fotoperiodo , Estaciones del Año , Transducción de Señal/fisiología , Animales , Línea Celular , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Hipotálamo/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
4.
Expert Rev Mol Med ; 17: e4, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25634368

RESUMEN

Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.


Asunto(s)
Genoma Humano/genética , Medicina de Precisión , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Predisposición Genética a la Enfermedad , Humanos
5.
Addict Neurosci ; 2: None, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35712020

RESUMEN

Alcohol use disorder (AUD) is one of the major causes of mortality and morbidity world-wide. It is estimated that 50% of the causes of AUD are heritable. Efforts to determine the genetic determinants governing AUD using genome wide association studies (GWAS) show that the most strongly associated SNPs occur within, or in the vicinity of, genes encoding enzymes that metabolise ethanol. However, these studies were not so conclusive in identifying the genes that influenced the choice to drink ethanol or why a proportion of the population become addicted. Most importantly, these studies also found that over 98% of the 1292 SNPs associated with AUD (p<1 × 10-6) were found outside of coding regions and within the poorly understood non-coding genome. Many years of study have shown that functional components of the non-coding genome include enigmatic enhancer elements whose biological role is to modulate levels of gene expression in specific cells, in specific amounts and in response to the correct stimuli. The current short review introduces the functional components of the non-coding genome, such as promoters and enhancers, and critically assesses the latest methods of identifying and characterising their context dependant roles in AUD and mental health disorders. We then go on to examine what is known about the roles of enhancers, such as the GAL5.1 enhancer, in alcohol intake and explore how enhancers are affected by polymorphic variation and epigenetic markers such as DNA-methylation and may influence susceptibility to AUD. The review finishes by discussing the future of AUD genetics and what technologies will need to be brought to bear to understand how genetic and environmentally induced changes in enhancer structure may contribute to the need to drink alcohol to excess.

6.
Psychoneuroendocrinology ; 109: 104407, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445429

RESUMEN

The cannabinoid-1 receptor (CB1) plays a critical role in a number of biological processes including nutrient intake, addiction and anxiety-related behaviour. Numerous studies have shown that expression of the gene encoding CB1 (CNR1) is highly dynamic with changes in the tissue specific expression of CNR1 associated with brain homeostasis and disease progression. However, little is known of the mechanisms regulating this dynamic expression. To gain a better understanding of the genomic mechanisms modulating the expression of CNR1 in health and disease we characterised the role of a highly conserved regulatory sequence (ECR1) in CNR1 intron 2 that contained a polymorphism in linkage disequilibrium with disease associated SNPs. We used CRISPR/CAS9 technology to disrupt ECR1 within the mouse genome. Disruption of ECR1 significantly reduced CNR1 expression in the hippocampus but not in the hypothalamus. These mice also displayed an altered sex-specific anxiety-related behavioural profile (open field test), reduced ethanol intake and a reduced hypothermic response following CB1 agonism. However, no significant changes in feeding patterns were detected. These data suggest that, whilst not all of the expression of CNR1 is modulated by ECR1, this highly conserved enhancer is required for appropriate physiological responses to a number of stimuli. The combination of comparative genomics and CRISPR/CAS9 disruption used in our study to determine the functional effects of genetic and epigenetic changes on the activity of tissue-specific regulatory elements at the CNR1 locus represent an important first step in gaining a mechanistic understanding of cannabinoid regulatory pharmacogenetics.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Conducta Adictiva/genética , Receptor Cannabinoide CB1/genética , Animales , Ansiedad/genética , Trastornos de Ansiedad/genética , Encéfalo/metabolismo , Cannabinoides/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Intrones/genética , Desequilibrio de Ligamiento/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/genética , Receptor Cannabinoide CB1/metabolismo
7.
Nutr Metab (Lond) ; 16: 57, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462902

RESUMEN

BACKGROUND: The rise in global obesity makes it crucial to understand how diet drives obesity-related health conditions, such as premature cognitive decline and Alzheimer's disease (AD). In AD hippocampal-dependent episodic memory is one of the first types of memory to be impaired. Previous studies have shown that in mice fed a high-fat diet (HFD) episodic memory is rapidly but reversibly impaired. METHODS: In this study we use hippocampal proteomics to investigate the effects of HFD in the hippocampus. Mice were fed either a low-fat diet (LFD) or HFD containing either 10% or 60% (Kcal) from fat for 3 days, 1 week or 2 weeks. One group of mice were fed the HFD for 1 week and then returned to the LFD for a further week. Primary hippocampal cultures were challenged with palmitic acid (PA), the most common long-chain saturated FA in the Western diet, and with the anti-inflammatory, n-3 polyunsaturated FA, docosahexaenoic acid (DHA), or a combination of the two to ascertain effects of these fatty acids on dendritic structure. RESULTS: HFD-induced changes occur in hippocampal proteins involved in metabolism, inflammation, cell stress, cell signalling, and the cytoskeleton after 3 days, 1 week and 2 weeks of HFD. Replacement of the HFD after 1 week by a low-fat diet (LFD) for a further week resulted in partial recovery of the hippocampal proteome. Microtubule-associated protein 2 (MAP2), one of the earliest proteins changed, was used to investigate the impact of fatty acids (FAs) on hippocampal neuronal morphology. PA challenge resulted in shorter and less arborised dendrites while DHA had no effect when applied alone but counteracted the effects of PA when FAs were used in combination. Dendritic morphology recovered when PA was removed from the cell culture media. CONCLUSION: This study provides evidence for the rapid and reversible effects of diet on the hippocampal proteome and the impact of PA and DHA on dendritic structure.

8.
Methods Mol Biol ; 1589: 29-45, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26025621

RESUMEN

There can now be little doubt that the cis-regulatory genome represents the largest information source within the human genome essential for health. In addition to containing up to five times more information than the coding genome, the cis-regulatory genome also acts as a major reservoir of disease-associated polymorphic variation. The cis-regulatory genome, which is comprised of enhancers, silencers, promoters, and insulators, also acts as a major functional target for epigenetic modification including DNA methylation and chromatin modifications. These epigenetic modifications impact the ability of cis-regulatory sequences to maintain tissue-specific and inducible expression of genes that preserve health. There has been limited ability to identify and characterize the functional components of this huge and largely misunderstood part of the human genome that, for decades, was ignored as "Junk" DNA. In an attempt to address this deficit, the current chapter will first describe methods of identifying and characterizing functional elements of the cis-regulatory genome at a genome-wide level using databases such as ENCODE, the UCSC browser, and NCBI. We will then explore the databases on the UCSC genome browser, which provides access to DNA methylation and chromatin modification datasets. Finally, we will describe how we can superimpose the huge volume of study data contained in the NCBI archives onto that contained within the UCSC browser in order to glean relevant in vivo study data for any locus within the genome. An ability to access and utilize these information sources will become essential to informing the future design of experiments and subsequent determination of the role of epigenetics in health and disease and will form a critical step in our development of personalized medicine.


Asunto(s)
Biología Computacional/métodos , Metilación de ADN , Bases de Datos Genéticas , Epigenómica , Genoma Humano , Variación Genética , Humanos , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos
9.
Neuropeptides ; 64: 19-25, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28038787

RESUMEN

Neuropeptides and their receptors play a role in physiological responses such as appetite, stress and inflammatory pain. With neuropeptides having such diverse and important physiological roles, knocking-out the genes encoding them, their receptors, parts of their regulatory sequences, or reproducing disease associated polymorphic variants are important steps in studying neuropeptides and how they may contribute to disease. Previously, knock-outs were generated using methods such as targeted homologous recombination in embryonic stem cells but this method is costly and time-consuming. The CRISPR/Cas9 system has rapidly taken over the genome editing field and will advance our understanding of neuropeptide genes and their regulation. With CRISPR/Cas9 technology, the time and costs involved in producing transgenic animal models, is greatly reduced. In this review, we describe how the system can be used to manipulate genomic sequences by "knock-out" or "knock-in" mutations in cell lines or in animal models. We also discuss the specificity of the system and methods to limit off-target effects. When combined with the availability of genome sequences, CRISPR/Cas9 directed genome editing in vitro and in vivo, promises to provide a deeper understanding of the biology of the neuropeptides in health and disease than has ever been available before.


Asunto(s)
Sistemas CRISPR-Cas , Expresión Génica/genética , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Neuropéptidos/genética , Animales , Sistemas CRISPR-Cas/genética , Técnicas de Sustitución del Gen/métodos , Técnicas de Inactivación de Genes/métodos , Humanos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA