Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365240

RESUMEN

Several iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains. However, these data are crucial to understanding the pertinency of these models for studying AD-related pathomechanisms over time. We developed a 3D bioengineered model of iPSC-derived neural tissue that combines a porous scaffold composed of silk fibroin protein with an intercalated collagen hydrogel to support the growth of neurons and glial cells into complex and functional networks for an extended time, a fundamental requisite for aging studies. Cultures were generated from iPSC lines obtained from two subjects carrying the familial AD (FAD) APP London mutation, two well-studied control lines, and an isogenic control. Cultures were analyzed at 2 and 4.5 months. At both time points, an elevated Aß42/40 ratio was detected in conditioned media from FAD cultures. However, extracellular Aß42 deposition and enhanced neuronal excitability were observed in FAD culture only at 4.5 months, suggesting that extracellular Aß deposition may trigger enhanced network activity. Remarkably, neuronal hyperexcitability has been described in AD patients early in the disease. Transcriptomic analysis revealed the deregulation of multiple gene sets in FAD samples. Such alterations were strikingly similar to those observed in human AD brains. These data provide evidence that our patient-derived FAD model develops time-dependent AD-related phenotypes and establishes a temporal relation among them. Furthermore, FAD iPSC-derived cultures recapitulate transcriptomic features of AD patients. Thus, our bioengineered neural tissue represents a unique tool to model AD in vitro over time.

2.
J Neurosci ; 40(49): 9364-9371, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33122390

RESUMEN

Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signaling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (1) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knock-down; (2) antagonists of TRPV4 channels; (3) antagonist of P2Y1 receptors for ATP; and (4) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knock-out mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signaling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENT There is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 (Cx43) hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia, and reduced perfusion.


Asunto(s)
Astrocitos/fisiología , Mecanotransducción Celular/fisiología , Adenosina Trifosfato/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Circulación Cerebrovascular/fisiología , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Femenino , Frecuencia Cardíaca/fisiología , Masculino , Mecanotransducción Celular/efectos de los fármacos , Ratones , Ratones Noqueados , Péptidos/antagonistas & inhibidores , Péptidos/genética , Estimulación Física , Ratas , Receptores Purinérgicos P2Y1/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética
3.
Immunity ; 30(2): 300-11, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19167248

RESUMEN

To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8(+) T cells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. The proportion of these populations varied over time associated with changes in antigen availability as well as T cell expression of the inhibitory receptor PD1. Unexpectedly, the movement of infiltrating cells was closely associated with an infection-induced reticular system of fibers. This observation suggests that, whereas in other tissues pre-existing scaffolds exist that guide lymphocyte migration, in the brain specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Toxoplasma/inmunología , Toxoplasmosis Cerebral/inmunología , Toxoplasmosis Cerebral/parasitología , Animales , Sistema Nervioso Central/inmunología , Ratones , Ratas , Toxoplasmosis Cerebral/patología
4.
Glia ; 65(7): 1059-1071, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370368

RESUMEN

Nervous tissue is characterized by a tight structural association between glial cells and neurons. It is well known that glial cells support neuronal functions, but their role under pathologic conditions is less well understood. Here, we addressed this question in vivo using an experimental model of retinal ischemia and transgenic mice for glia-specific inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis. Transgene expression reduced glutamate, but not ATP release from single Müller cells, impaired glial volume regulation under normal conditions and reduced neuronal dysfunction and death in the inner retina during the early stages of ischemia. Our study reveals that the SNARE-dependent exocytosis in glial cells contributes to neurotoxicity during ischemia in vivo and suggests glial exocytosis as a target for therapeutic approaches.


Asunto(s)
Exocitosis/genética , Isquemia/complicaciones , Degeneración Nerviosa/etiología , Retina/patología , Células Ganglionares de la Retina/metabolismo , Proteínas SNARE/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/uso terapéutico , Células Ependimogliales/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Filamentos Intermedios/metabolismo , Isquemia/patología , Luz , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptores Purinérgicos P2Y1/deficiencia , Receptores Purinérgicos P2Y1/genética , Proteínas SNARE/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
PLoS Pathog ; 11(8): e1005126, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26313746

RESUMEN

An important determinant of disease following Streptococcus pneumoniae (pneumococcus) lung infection is pulmonary inflammation mediated by polymorphonuclear leukocytes (PMNs). We found that upon intratracheal challenge of mice, recruitment of PMNs into the lungs within the first 3 hours coincided with decreased pulmonary pneumococci, whereas large numbers of pulmonary PMNs beyond 12 hours correlated with a greater bacterial burden. Indeed, mice that survived infection largely resolved inflammation by 72 hours, and PMN depletion at peak infiltration, i.e. 18 hours post-infection, lowered bacterial numbers and enhanced survival. We investigated host signaling pathways that influence both pneumococcus clearance and pulmonary inflammation. Pharmacologic inhibition and/or genetic ablation of enzymes that generate extracellular adenosine (EAD) (e.g. the ectoenzyme CD73) or degrade EAD (e.g. adenosine deaminase) revealed that EAD dramatically increases murine resistance to S. pneumoniae lung infection. Moreover, adenosine diminished PMN movement across endothelial monolayers in vitro, and although inhibition or deficiency of CD73 had no discernible impact on PMN recruitment within the first 6 hours after intratracheal inoculation of mice, these measures enhanced PMN numbers in the pulmonary interstitium after 18 hours of infection, culminating in dramatically elevated numbers of pulmonary PMNs at three days post-infection. When assessed at this time point, CD73-/- mice displayed increased levels of cellular factors that promote leukocyte migration, such as CXCL2 chemokine in the murine lung, as well as CXCR2 and ß-2 integrin on the surface of pulmonary PMNs. The enhanced pneumococcal susceptibility of CD73-/- mice was significantly reversed by PMN depletion following infection, suggesting that EAD-mediated resistance is largely mediated by its effects on PMNs. Finally, CD73-inhibition diminished the ability of PMNs to kill pneumococci in vitro, suggesting that EAD alters both the recruitment and bacteriocidal function of PMNs. The EAD-pathway may provide a therapeutic target for regulating potentially harmful inflammatory host responses during Gram-positive bacterial pneumonia.


Asunto(s)
Adenosina/fisiología , Pulmón/patología , Infiltración Neutrófila , Neumonía Neumocócica/inmunología , 5'-Nucleotidasa/fisiología , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Purinérgicos P1/fisiología
6.
PLoS Biol ; 12(1): e1001747, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24409095

RESUMEN

Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+)-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+)-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using "sniff-cell" approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca(2+) via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca(2+) in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca(2+)-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Neocórtex/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Animales , Astrocitos/citología , Bestrofinas , Calcio/metabolismo , Comunicación Celular , Exocitosis , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neocórtex/citología , Neuronas/citología , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X4/deficiencia , Receptores Purinérgicos P2X4/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(38): 13811-6, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25114234

RESUMEN

The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas/metabolismo , Ingeniería de Tejidos/métodos , Animales , Lesiones Encefálicas/terapia , Corteza Cerebral/citología , Neuronas/citología , Ratas , Ratas Sprague-Dawley
8.
Neurobiol Dis ; 91: 315-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27060558

RESUMEN

Astroglia, the most abundant glial cells in the mammalian central nervous system (CNS), are considered an emerging key player in seizure induction and progression. Although astrocytes undergo reactive gliosis in temporal lobe epilepsy (TLE) with dramatic morphological and molecular changes, specific astrocyte targets/molecular pathways that contribute to the induction and progression of seizure remain largely unknown. By combining translating ribosomal affinity purification (TRAP) with the pilocarpine model of TLE in BAC aldh1l1 TRAP mice, we profiled translating mRNAs from hippocampal or cortical astrocytes at different phases (3days, 30days, and 60days post-pilocarpine injections) of pilocarpine-induced epilepsy models. Our results found that hippocampal (but not cortical) astrocytes undergo early and unique molecular changes at 3days post-pilocarpine injections. These changes indicate a potentially primary pathogenic role of hippocampal astrocytes in seizure induction and progression and provide new insights about the involvement of specific astrocytic pathways/targets in epilepsy. In particular, we validated expression changes of ocrl and aeg1 in pilocarpine models. Follow-up studies on these genes may reveal new roles of hippocampal astrocytes in TLE.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/patología , Masculino , Ratones , Lóbulo Temporal/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(43): 17540-5, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101472

RESUMEN

Astrocytes modulate neuronal activity, synaptic transmission, and behavior by releasing chemical transmitters in a process termed gliotransmission. Whether this process impacts epilepsy in vivo is not known. We show that genetic impairment of transmitter release from astrocytes by the expression of a glial dominant-negative SNARE domain in mice reduced epileptiform activity in situ, delayed seizure onset after pilocarpine-induced status epilepticus, and attenuated subsequent progressive increase in seizure frequency in vivo. The reduced seizure frequency was accompanied by attenuation of hippocampal damage and behavioral deficits. As the delay in seizure onset and the reduced seizure frequency were mimicked by intracerebroventricular delivery of the NMDA receptor (NMDAR) antagonist D-(-)-2-amino-5-phosphonopentanoate in WT littermates and because dominant-negative SNARE expression leads to a hypofunction of synaptic NMDARs, we conclude that astrocytes modulate epileptogenesis, recurrent spontaneous seizures, and pathophysiological consequences of epilepsy through a pathway involving NMDARs.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Pilocarpina , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo
10.
Proc Natl Acad Sci U S A ; 110(41): 16628-33, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24043839

RESUMEN

In schizophrenia, cognitive dysfunction is highly predictive of poor patient outcomes and is not responsive to current medications. Postmortem studies have suggested that cognitive deficits in schizophrenia are correlated with modifications in the number and size of inhibitory synapses. To test if these modifications lead to cognitive deficits, we have created a dominant-negative virus [adeno-associated (AAV)-DN1] that disrupts the clustering of γ-aminobutyric acid type A receptors (GABA(A)Rs) at postsynaptic inhibitory specializations. When injected into the frontal cortex of mice, AAV-DN1 impairs GABA(A)R α2 subunit and GABA transporter 1 (GAT-1) clustering, but increases GABA(A)R α1 subunit clustering on the perisomatic region, with no influence on axon-initial segment clustering. Mice expressing AAV-DN1 have prepulse inhibition deficits and impairments in working memory. Significantly, these behavioral deficits are paralleled by a reduction in electroencephalography γ-power. Collectively, our study provides functional evidence revealing that GABAergic synapses in the prefrontal cortex directly contribute to cognition and γ-power.


Asunto(s)
Cognición/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Receptores de GABA-A/metabolismo , Esquizofrenia/metabolismo , Animales , Electroencefalografía , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Ingeniería Genética/métodos , Vectores Genéticos/genética , Inmunohistoquímica , Ratones , Esquizofrenia/patología , Transducción de Señal/fisiología
11.
J Neurosci ; 34(5): 1879-91, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24478367

RESUMEN

Sleep impairments are comorbid with a variety of neurological and psychiatric disorders including depression, epilepsy, and alcohol abuse. Despite the prevalence of these disorders, the cellular mechanisms underlying the interaction between sleep disruption and behavior remain poorly understood. In this study, the impact of chronic sleep loss on sleep homeostasis was examined in C57BL/6J mice following 3 d of sleep restriction. The electroencephalographic power of slow-wave activity (SWA; 0.5-4 Hz) in nonrapid eye movement (NREM) sleep and adenosine tone were measured during and after sleep restriction, and following subsequent acute sleep deprivation. During the first day of sleep restriction, SWA and adenosine tone increased, indicating a homeostatic response to sleep loss. On subsequent days, SWA declined, and this was accompanied by a corresponding reduction in adenosine tone caused by a loss of one source of extracellular adenosine. Furthermore, the response to acute sleep deprivation (6 h) was significantly attenuated in sleep-restricted mice. These effects were long-lasting with reduced SWA and adenosine tone persisting for at least 2 weeks. To investigate the behavioral consequences of chronic sleep restriction, sensitivity to the motor-impairing effects of alcohol was also examined. Sleep-restricted mice were significantly less sensitive to alcohol when tested 24 h after sleep restriction, an effect that persisted for 4 weeks. Intracerebroventricular infusion of an adenosine A1 receptor antagonist produced a similar decrease in sensitivity to alcohol. These results suggest that chronic sleep restriction induces a sustained impairment in adenosine-regulated sleep homeostasis and consequentially impacts the response to alcohol.


Asunto(s)
Adenosina/metabolismo , Alcoholes/farmacología , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Homeostasis/fisiología , Neuronas/metabolismo , Privación de Sueño/fisiopatología , Potenciales de Acción/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , Alcoholes/sangre , Alcoholes/toxicidad , Animales , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Electroencefalografía , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Homeostasis/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/etiología , Neuronas/citología , Neuronas/efectos de los fármacos , Antagonistas de Receptores Purinérgicos P1/farmacología , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiología , Teofilina/análogos & derivados , Teofilina/farmacología , Tioinosina/análogos & derivados , Tioinosina/farmacología , Factores de Tiempo , Vigilia/efectos de los fármacos
12.
J Neurosci ; 34(6): 2331-48, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501372

RESUMEN

Motor neurons are progressively and predominantly degenerated in ALS, which is not only induced by multiple intrinsic pathways but also significantly influenced by the neighboring glial cells. In particular, astrocytes derived from the SOD1 mutant mouse model of ALS or from human familial or sporadic ALS patient brain tissue directly induce motor neuron death in culture; however, the mechanisms of pathological astroglial secretion remain unclear. Here we investigated abnormal calcium homeostasis and altered exocytosis in SOD1G93A astrocytes. We found that purinergic stimulation induces excess calcium release from the ER stores in SOD1G93A astrocytes, which results from the abnormal ER calcium accumulation and is independent of clearance mechanisms. Furthermore, pharmacological studies suggested that store-operated calcium entry (SOCE), a calcium refilling mechanism responsive to ER calcium depletion, is enhanced in SOD1G93A astrocytes. We found that oxidant-induced increased S-glutathionylation and calcium-independent puncta formation of the ER calcium sensor STIM1 underlies the abnormal SOCE response in SOD1G93A astrocytes. Enhanced SOCE contributes to ER calcium overload in SOD1G93A astrocytes and excess calcium release from the ER during ATP stimulation. In addition, ER calcium release induces elevated ATP release from SOD1G93A astrocytes, which can be inhibited by the overexpression of dominant-negative SNARE. Selective inhibition of exocytosis in SOD1G93A astrocytes significantly prevents astrocyte-mediated toxicity to motor neurons and delays disease onset in SOD1G93A mice. Our results characterize a novel mechanism responsible for calcium dysregulation in SOD1G93A astrocytes and provide the first in vivo evidence that astrocyte exocytosis contributes to the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/fisiología , Señalización del Calcio/fisiología , Exocitosis/fisiología , Proteínas SNARE/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo/métodos , Femenino , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Superóxido Dismutasa/toxicidad
13.
J Neurosci ; 34(3): 804-16, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431439

RESUMEN

Cognitive dysfunction is a common symptom in many neuropsychiatric disorders and directly correlates with poor patient outcomes. The majority of prolonged inhibitory signaling in the brain is mediated via GABAB receptors (GABABRs), but the molecular function of these receptors in cognition is ill defined. To explore the significance of GABABRs in neuronal activity and cognition, we created mice with enhanced postsynaptic GABABR signaling by mutating the serine 783 in receptor R2 subunit (S783A), which decreased GABABR degradation. Enhanced GABABR activity reduced the expression of immediate-early gene-encoded protein Arc/Arg3.1, effectors that are critical for long-lasting memory. Intriguingly, S783A mice exhibited increased numbers of excitatory synapses and surface AMPA receptors, effects that are consistent with decreased Arc/Arg3.1 expression. These deficits in Arc/Arg3.1 and neuronal morphology lead to a deficit in spatial memory consolidation. Collectively our results suggest a novel and unappreciated role for GABABR activity in determining excitatory neuronal architecture and spatial memory via their ability to regulate Arc/Arg3.1.


Asunto(s)
Proteínas del Citoesqueleto/antagonistas & inhibidores , Potenciales Postsinápticos Excitadores/fisiología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuronas/metabolismo , Receptores de GABA-B/fisiología , Conducta Espacial/fisiología , Sinapsis/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Técnicas de Sustitución del Gen , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Receptores de GABA-B/genética
14.
J Neurosci ; 33(10): 4234-40, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467341

RESUMEN

A strong body of research has defined the role of excitotoxic glutamate in animal models of brain ischemia and stroke; however, clinical trials of glutamate receptor antagonists have demonstrated their limited capacity to prevent brain damage following ischemia. We propose that astrocyte-neuron signaling represents an important modulatory target that may be useful in mediating damage following stroke. To assess the impact of astrocyte signaling on damage following stroke, we have used the astrocyte-specific dominant-negative SNARE mouse model (dnSNARE). Recent findings have shown that the astrocytic SNARE signaling pathway can affect neuronal excitability by regulating the surface expression of NMDA receptors. Using focal photothrombosis via the Rose Bengal method, as well as excitotoxic NMDA lesions, we show that dnSNARE animals exhibited a sparing of damaged tissue quantified using Nissl and NeuN staining. At the same time point, animals were also tested in behavioral tasks that probe the functional integrity of stroke- or lesion-damaged motor and somatosensory areas. We found that dnSNARE mice performed significantly better than littermate controls on rung walk and adhesive dot removal tasks following lesion. Together, our results demonstrate the important role of astrocytic signaling under ischemic conditions. Drugs targeting astrocyte signaling have a potential benefit for the outcome of stroke in human patients by limiting the spread of damage.


Asunto(s)
Astrocitos/metabolismo , Infarto Encefálico/etiología , Infarto Encefálico/patología , Proteínas SNARE/metabolismo , Transducción de Señal/fisiología , Accidente Cerebrovascular/complicaciones , Animales , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Trombosis Intracraneal/complicaciones , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , N-Metilaspartato/toxicidad , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Desempeño Psicomotor/fisiología , Proteínas SNARE/genética , Accidente Cerebrovascular/etiología
15.
Brain ; 136(Pt 1): 65-80, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23293266

RESUMEN

The recent public awareness of the incidence and possible long-term consequences of traumatic brain injury only heightens the need to develop effective approaches for treating this neurological disease. In this report, we identify a new therapeutic target for traumatic brain injury by studying the role of astrocytes, rather than neurons, after neurotrauma. We use in vivo multiphoton imaging and show that mechanical forces during trauma trigger intercellular calcium waves throughout the astrocytes, and these waves are mediated by purinergic signalling. Subsequent in vitro screening shows that astrocyte signalling through the 'mechanical penumbra' affects the activity of neural circuits distant from the injury epicentre, and a reduction in the intercellular calcium waves within astrocytes restores neural activity after injury. In turn, the targeting of different purinergic receptor populations leads to a reduction in hippocampal cell death in mechanically injured organotypic slice cultures. Finally, the most promising therapeutic candidate from our in vitro screen (MRS 2179, a P2Y1 receptor antagonist) also improves histological and cognitive outcomes in a preclinical model of traumatic brain injury. This work shows the potential of studying astrocyte signalling after trauma to yield new and effective therapeutic targets for treating traumatic brain injury.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Astrocitos/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2Y/farmacología , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adenosina Difosfato/farmacología , Adenosina Difosfato/uso terapéutico , Animales , Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/lesiones , Corteza Cerebral/metabolismo , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Ratas , Ratas Sprague-Dawley
16.
Annu Rev Physiol ; 72: 335-55, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20148679

RESUMEN

The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neurotransmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, d-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. d-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type-specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation.


Asunto(s)
Astrocitos/fisiología , Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Señalización del Calcio/fisiología , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Humanos , Red Nerviosa/citología , Red Nerviosa/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/fisiología , Purinas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Serina/metabolismo , Serina/fisiología , Sueño/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
17.
Nat Commun ; 15(1): 5979, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013907

RESUMEN

Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.


Asunto(s)
Astrocitos , Área Hipotalámica Lateral , Ácido Láctico , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos , Neuronas , Orexinas , Sueño , Vigilia , Animales , Astrocitos/metabolismo , Vigilia/fisiología , Orexinas/metabolismo , Sueño/fisiología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas/metabolismo , Ácido Láctico/metabolismo , Ratones , Área Hipotalámica Lateral/metabolismo , Masculino , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares
18.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712028

RESUMEN

The disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer's disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer's disease.

19.
J Neurosci ; 32(13): 4417-25, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457491

RESUMEN

Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes.


Asunto(s)
Adenosina/metabolismo , Astrocitos/metabolismo , Líquido Extracelular/metabolismo , Transmisión Sináptica/fisiología , Vigilia/fisiología , Adenosina/fisiología , Animales , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A1/fisiología , Privación de Sueño/metabolismo , Transmisión Sináptica/efectos de los fármacos , Teofilina/análogos & derivados , Teofilina/farmacología , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología
20.
Glia ; 61(2): 129-39, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23027687

RESUMEN

Sleep is an evolutionarily conserved phenomenon that is clearly essential for survival, but we have limited understanding of how and why it is so important. Adenosine triphosphate (ATP)/adenosine signaling has been known to be important in the regulation of sleep and recent evidence suggests a critical role for gliotransmission in the modulation of sleep homeostasis. Herein, we review the regulation of ATP/adenosine in the nervous system and provide evidence of a critical role for astrocyte-derived adenosine in the regulation of sleep homeostasis and the modulation of synaptic transmission. Further understanding of the role of glial cells in the regulation of sleep may provide new targets for pharmaceutical intervention in the treatment of brain dysfunctions, specifically those that are comorbid with sleep disruptions.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Purinas/metabolismo , Sueño/fisiología , Animales , Comunicación Celular , Humanos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA