Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 261: 122024, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986282

RESUMEN

Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Aguas Residuales/microbiología , Monitoreo del Ambiente/métodos , Microbiología del Agua , Calidad del Agua , Humanos
2.
Sci Total Environ ; 889: 164261, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201817

RESUMEN

A multiplex quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based method was designed for the simultaneous detection of influenza A, SARS-CoV-2, respiratory syncytial virus, and measles virus. The performance of the multiplex assay was compared to four monoplex assays for relative quantification using standard quantification curves. Results showed that the multiplex assay had comparable linearity and analytical sensitivity to the monoplex assays, and the quantification parameters of both assays demonstrated minimal differences. Viral reporting recommendations for the multiplex method were estimated based on the corresponding limit of quantification (LOQ) and the limit of detection at 95 % confidence interval (LOD) values for each viral target. The LOQ was determined by the lowest nominal RNA concentrations where %CV values were ≤35 %. Corresponding LOD values for each viral target were between 15 and 25 gene copies per reaction (GC/rxn), and LOQ values were within 10 to 15 GC/rxn. The detection performance of a new multiplex assay was validated in the field by collecting composite wastewater samples from a local treatment facility and passive samples from three sewer shed locations. Results indicated that the assay could accurately estimate viral loads from various sample types, with samples collected from passive samplers showing a greater range of detectable viral concentrations than composite wastewater samples. This suggests that the sensitivity of the multiplex method may be improved when paired with more sensitive sampling methods. Laboratory and field results demonstrate the robustness and sensitivity of the multiplex assay and its applicability to detect the relative abundance of four viral targets among wastewater samples. Conventional monoplex RT-qPCR assays are suitable for diagnosing viral infections. However, multiplex analysis using wastewater provides a fast and cost-effective way to monitor viral diseases in a population or environment.


Asunto(s)
COVID-19 , Gripe Humana , Sarampión , Virosis , Humanos , Virus Sincitiales Respiratorios , SARS-CoV-2 , Aguas Residuales , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa Multiplex/métodos
3.
Sci Rep ; 13(1): 17336, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833399

RESUMEN

Human viruses pose a significant health risk in freshwater environments, but current monitoring methods are inadequate for detecting viral presence efficiently. We evaluated a novel passive in-situ concentration method using granular activated carbon (GAC). This study detected and quantified eight enteric and non-enteric, pathogenic viruses in a freshwater recreational lake in paired grab and GAC passive samples. The results found that GAC passive sampling had a higher detection rate for all viruses compared to grab samples, with adenovirus found to be the most prevalent virus, followed by respiratory syncytial virus, norovirus, enterovirus, influenza A, SARS-CoV-2, and rotavirus. GAC in-situ concentration allowed for the capture and recovery of viral gene copy targets that ranged from one to three orders of magnitude higher than conventional ex-situ concentration methods used in viral monitoring. This simple and affordable sampling method may have far-reaching implications for reducing barriers associated with viral monitoring across various environmental contexts.


Asunto(s)
COVID-19 , Enterovirus , Virus , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Virus/genética , Enterovirus/genética , Lagos , Agua , Microbiología del Agua
4.
Sci Total Environ ; 847: 157548, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882338

RESUMEN

Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.


Asunto(s)
COVID-19 , Aguas Residuales , Adsorción , Carbón Orgánico , Humanos , ARN Viral , Reproducibilidad de los Resultados , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Agua
5.
ACS ES T Water ; 2(11): 1910-1920, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566371

RESUMEN

In developing an effective monitoring program for the wastewater surveillance of SARS-CoV-2 ribonucleic acid (RNA), the importance of sampling methodology is paramount. Passive sampling has been shown to be an effective tool to detect SARS-CoV-2 RNA in wastewater. However, the adsorption characteristics of SARS-CoV-2 RNA on passive sampling material are not well-understood, which further obscures the relationship between wastewater surveillance and community infection. In this work, adsorption kinetics and equilibrium characteristics were evaluated using batch-adsorption experiments for heat-inactivated SARS-CoV-2 (HI-SCV-2) adsorption to electronegative filters. Equilibrium isotherms were assessed or a range of total suspended solids (TSS) concentrations (118, 265, and 497 mg L-1) in wastewater, and a modeled qmax of 7 × 103 GU cm-2 was found. Surrogate adsorption kinetics followed a pseudo-first-order model in wastewater with maximum concentrations achieved within 24 h. In both field and isotherm experiments, equilibrium behavior and viral recovery were found to be associated with wastewater and eluate TSS. On the basis of the results of this study, we recommend a standard deployment duration of 24-48 h and the inclusion of eluate TSS measurement to assess the likelihood of solids inhibition during analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA