Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Theor Appl Genet ; 134(10): 3319-3337, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34196730

RESUMEN

KEY MESSAGE: Photoperiod and temperature conditions elicit different genetic regulation over lettuce bolting and flowering. This study identifies environment-specific QTLs and putative genes and provides information for genetic marker assay. Bolting, defined as stem elongation, marks the plant life cycle transition from vegetative to reproductive stage. Lettuce is grown for its leaf rosettes, and premature bolting may reduce crop quality resulting in economic losses. The transition to reproductive stage is a complex process that involves many genetic and environmental factors. In this study, the effects of photoperiod and ambient temperature on bolting and flowering regulation were studied by utilizing a lettuce mapping population to identify quantitative trait loci (QTL) and by gene expression analyses of genotypes with contrasting phenotypes. A recombinant inbred line (RIL) population, derived from a cross between PI 251246 (early bolting) and cv. Salinas (late bolting), was grown in four combinations of short (8 h) and long (16 h) days and low (20 °C) and high (35 °C) temperature. QTL models revealed both genetic (G) and environmental (E) effects, and GxE interactions. A major QTL for bolting and flowering time was found on chromosome 7 (qFLT7.2), and two candidate genes were identified by fine mapping, homology, and gene expression studies. In short days and high temperature conditions, qFLT7.2 had no effect on plant development, while several small-effect loci on chromosomes 2, 3, 6, 8, and 9 were associated with bolting and flowering. Of these, the QTL on chromosome 2, qBFr2.1, co-located with the Flowering Locus T (LsFT) gene. Polymorphisms between parent genotypes in the promotor region may explain identified gene expression differences and were used to design a genetic marker which may be used to identify the late bolting trait.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Lactuca/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Flores/genética , Lactuca/genética , Fenotipo , Fotoperiodo , Proteínas de Plantas/genética
2.
Phytopathology ; 111(5): 842-849, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33141646

RESUMEN

Lettuce (Lactuca sativa) is one of the most economically important vegetables in the United States, with approximately 50% of the domestic production concentrated in the Salinas Valley of California. Verticillium wilt, caused by races 1 and 2 of the fungal pathogen Verticillium dahliae, poses a major threat to lettuce production in this area. Although resistance governed by a single dominant gene against race 1 has previously been identified and is currently being incorporated into commercial cultivars, identification of resistance against race 2 has been challenging and no lines with complete resistance have been identified. In this study, we screened germplasm for resistance and investigated the genetics of partial resistance against race 2 using three mapping populations derived from crosses involving L. sativa × L. sativa and L. serriola × L. sativa. The inheritance of resistance in Lactuca species against race 2 is complex but a common quantitative trait locus (QTL) on linkage group 6, designated qVERT6.1 (quantitative Verticillium dahliae resistance on LG 6, first QTL), was detected in multiple populations. Additional race 2 resistance QTLs located in several linkage groups were detected in individual populations and environments. Because resistance in lettuce against race 2 is polygenic with a large genotype by environment interaction, breeding programs to incorporate these resistance genes should be aware of this complexity as they implement strategies to control race 2.


Asunto(s)
Verticillium , Ascomicetos , Lactuca/genética , Fitomejoramiento , Enfermedades de las Plantas , Verticillium/genética
3.
Theor Appl Genet ; 133(6): 1947-1966, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32123958

RESUMEN

KEY MESSAGE: Two major QTL, one for shelf life that corresponds to qSL4 and one, qDEV7, for developmental rate, were identified. Associated markers will be useful in breeding for improved fresh-cut lettuce. Fresh-cut lettuce in packaged salad can have short shelf life, and visible deterioration may start within a week after processing. Yield and developmental rate are an important aspect of lettuce production. Genetic diversity and genome-wide association studies (GWAS) were performed on 493 accessions with the genotypic data of 4615 high-quality single nucleotide polymorphism markers. Population structure (Q), principal component (PC), and phylogenetic analyses displayed genetic relationships associated with lettuce types and geographic distribution. Data for shelf life, yield, developmental rate, and their stability indices were used for statistical analysis, and GWAS was performed by general and mixed linear models. The genetic relationship among the individuals was incorporated into the models using kinship matrix, PC, and Q. Broad-sense heritability (H2) across environments was 0.43 for shelf life, 0.36 for yield, and 0.60 for developmental rate. There was a negative correlation between yield and developmental rate. Significant marker-trait association (SMTA) was detected for shelf life on chromosome 4. The most significant quantitative trait locus (QTL,  qSL4, P = 2.23E-17) explained 24% of the total phenotypic variation (R2). The major QTL for developmental rate was detected on chromosome 7 (qDEV7, P = 2.43E-16, R2 = 17%), while additional QTLs with smaller effect were found in all chromosomes. No SMTA was detected for yield. The study identified lettuce accessions with extended and stable shelf life, stable yield, and desirable developmental rate. Molecular markers closely linked to traits can be applied for selection of preferable genotypes and for identification of genes associated with these traits.


Asunto(s)
Ligamiento Genético , Lactuca/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cruzamientos Genéticos , Almacenamiento de Alimentos , Estudios de Asociación Genética , Genotipo , Lactuca/fisiología , Desequilibrio de Ligamiento , Fenotipo , Filogenia , Análisis de Componente Principal , Carácter Cuantitativo Heredable
4.
Theor Appl Genet ; 132(8): 2439-2460, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165222

RESUMEN

KEY MESSAGE: Two QTLs for resistance to lettuce drop, qLDR1.1 and qLDR5.1, were identified. Associated SNPs will be useful in breeding for lettuce drop and provide the foundation for future molecular analysis. Lettuce drop, caused by Sclerotinia minor and S. sclerotiorum, is an economically important disease of lettuce. The association of resistance to lettuce drop with the commercially undesirable trait of fast bolting has hindered the integration of host resistance in control of this disease. Eruption is a slow-bolting cultivar that exhibits a high level of resistance to lettuce drop. Eruption also is completely resistant to Verticillium wilt caused by race 1 of Verticillium dahliae. A recombinant inbred line population from the cross Reine des Glaces × Eruption was genotyped by sequencing and evaluated for lettuce drop and bolting in separate fields infested with either S. minor or V. dahliae. Two quantitative trait loci (QTLs) for lettuce drop resistance were consistently detected in at least two experiments, and two other QTLs were identified in another experiment; the alleles for resistance at all four QTLs originated from Eruption. A QTL for lettuce drop resistance on linkage group (LG) 5, qLDR5.1, was consistently detected in all experiments and explained 11 to 25% of phenotypic variation. On LG1, qLDR1.1 was detected in two experiments explaining 9 to 12% of the phenotypic variation. Three out of four resistance QTLs are distinct from QTLs for bolting; qLDR5.1 is pleiotropic or closely linked with a QTL for early bolting; however, the rate of bolting shows only a small effect on the variance in resistance observed at this locus. The SNP markers linked with these QTLs will be useful in breeding for resistance through marker-assisted selection.


Asunto(s)
Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Endogamia , Lactuca/genética , Lactuca/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Recombinación Genética/genética , Alelos , Antocianinas/metabolismo , Ascomicetos/fisiología , Ligamiento Genético , Sitios Genéticos , Lactuca/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Verticillium/fisiología
5.
Plant Dis ; 103(4): 668-676, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30742555

RESUMEN

Verticillium wilt of lettuce, caused by the soilborne pathogen Verticillium dahliae, poses a serious threat to the California lettuce industry. Knowledge of disease development and its impact on postharvest marketability would facilitate better management of the affected fields. This study investigated postharvest marketability of 22 lettuce varieties harvested from two Verticillium-infested commercial lettuce fields in Salinas and Watsonville, CA, in 2005 using a randomized complete block design. Periodic sampling to monitor disease in several crisphead varieties in the field demonstrated that root symptoms developed quickly at later stages of heading, followed by the onset of foliar symptoms as the crop reached harvest maturity. Harvested marketable heads were vacuum cooled soon after harvest to about 4°C and maintained at this temperature in commercial coolers. The impact of V. dahliae on postharvest marketability was assessed based on the percentage of heads per case deemed marketable following 1, 2, and 3 weeks of refrigerated storage. Across both field experiments, the average disease incidence and postharvest marketability ranged from 4.2 to 87.5% and from 69.4 to 100.0%, respectively, among lettuce types and varieties. The Pearson correlation analysis detected no significant relationship between disease incidence and postharvest marketability across all varieties tested (r = 0.041, P = 0.727), or within lettuce types, even though V. dahliae was recovered from 34% of the plants harvested, and recovery ranged from 0 to 73.3% for V. dahliae and from 10 to 91.7% for non-V. dahliae (V. isaacii or V. klebahnii) species. These findings demonstrate that growers can harvest lettuce from an infested field before foliar symptoms develop with negligible impact by Verticillium spp. on postharvest marketability or quality.


Asunto(s)
Microbiología de Alimentos , Lactuca , Verticillium , California , Calidad de los Alimentos , Lactuca/microbiología , Verticillium/fisiología
6.
Phytopathology ; 107(11): 1417-1425, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28653580

RESUMEN

Understanding pathogen evolution over time is vital for plant breeding and deployment of host resistance. In the context of a soilborne pathogen, the potential of host-directed evolution of a Verticillium dahliae race 1 isolate and genotypic variation of V. dahliae associated with two major hosts (lettuce and tomato) were determined. In total, 427 isolates were recovered over 6 years from a resistance screening nursery infested with a single V. dahliae race 1 isolate. In a separate study, an additional 206 isolates representing 163 and 43 isolates from commercial lettuce and tomato fields, respectively, were collected. Analyses of isolates recovered from the screening nursery over 6 years revealed no changes in the race and mating type composition but did uncover seven simple sequence repeat (SSR) variant genotypes. No significant genotypic variation in V. dahliae was observed between or within fields of either lettuce or tomato but pathogen populations were significantly differentiated between these two hosts. Replicated virulence assays of variant SSR genotypes on lettuce differential cultivars suggested no significant difference in virulence from the wild-type race 1 isolate introduced into the field. This suggests that deployed race 1 host resistance will be robust against the widespread race 1 populations in lettuce-growing regions at least for 6 years unless novel pathogen genotypes or races are introduced into the system.


Asunto(s)
Evolución Biológica , Lactuca/microbiología , Selección Genética , Solanum lycopersicum/microbiología , Verticillium/genética , Secuencia de Bases , ADN de Hongos/genética
7.
Phytopathology ; 105(3): 316-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25302523

RESUMEN

Dynamics of population sizes of Xanthomonas campestris pv. vitians inoculated onto or into lettuce leaves were monitored on susceptible and resistant cultivars. In general, population growth was greater for susceptible (Clemente, Salinas 88, Vista Verde) than resistant (Batavia Reine des Glaces, Iceberg, Little Gem) cultivars. When spray-inoculated or infiltrated, population levels of X. campestris pv. vitians were consistently significantly lower on Little Gem than on susceptible cultivars, while differences in the other resistant cultivars were not consistently statistically significant. Populations increased at an intermediate rate on cultivars Iceberg and Batavia Reine des Glaces. There were significant positive correlations between bacterial concentration applied and disease severity for all cultivars, but bacterial titer had a significantly greater influence on disease severity in the susceptible cultivars than in Little Gem and an intermediate influence in Iceberg and Batavia Reine des Glaces. Infiltration of X. campestris pv. vitians strains into leaves of Little Gem resulted in an incompatible reaction, whereas compatible reactions were observed in all other cultivars. It appears that the differences in the relationship between population dynamics for Little Gem and the other cultivars tested were due to the hypersensitive response in cultivar Little Gem. These findings have implications for disease management and lettuce breeding because X. campestris pv. vitians interacts differently with cultivars that differ for resistance mechanisms.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Lactuca/microbiología , Xanthomonas campestris/fisiología , Genotipo , Lactuca/genética
8.
Phytopathology ; 105(5): 662-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25585057

RESUMEN

Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.


Asunto(s)
Brassicaceae/microbiología , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Verticillium/patogenicidad , Quimera , Diploidia , Verticillium/genética , Verticillium/fisiología , Virulencia
9.
Phytopathology ; 105(5): 638-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25626074

RESUMEN

Verticillium dahliae is a soilborne, economically significant fungal plant pathogen that persists in the soil for up to 14 years as melanized microsclerotia (ms). Similarly, V. longisporum is a very significant production constraint on members of the family Brassicaceae. Management of Verticillium wilt has relied on methods that reduce ms below crop-specific thresholds at which little or no disease develops. Methyl bromide, a broad-spectrum biocide, has been used as a preplant soil fumigant for over 50 years to reduce V. dahliae ms. However, reductions in the number of ms in the vertical and horizontal soil profiles and the rate at which soil recolonization occurs has not been studied. The dynamics of ms in soil before and after methyl bromide+chloropicrin fumigation were followed over 3 years in six 8-by-8-m sites in two fields. In separate fields, the dynamics of ms in the 60-cm-deep vertical soil profile pre- and postfumigation with methyl bromide+chloropicrin followed by various cropping patterns were studied over 4 years. Finally, ms densities were assessed in six 8-by-8-m sites in a separate field prior to and following a natural 6-week flood. Methyl bromide+chloripicrin significantly reduced but did not eliminate V. dahliae ms in either the vertical or horizontal soil profiles. In field studies, increases in ms were highly dependent upon the crop rotation pattern followed postfumigation. In the vertical soil profile, densities of ms were highest in the top 5 to 20 cm of soil but were consistently detected at 60-cm depths. Six weeks of natural flooding significantly reduced (on average, approximately 65% in the total viable counts of ms) but did not eliminate viable ms of V. longisporum.


Asunto(s)
Brassicaceae/microbiología , Microbiología del Suelo , Verticillium/fisiología , Fumigación , Hifa/fisiología , Enfermedades de las Plantas/microbiología , Suelo , Agua/fisiología
10.
Phytopathology ; 105(9): 1220-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25915441

RESUMEN

Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.


Asunto(s)
Resistencia a la Enfermedad/genética , Lactuca/genética , Oomicetos/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Ligamiento Genético , Sitios Genéticos , Lactuca/inmunología
11.
Plant Dis ; 99(10): 1404-1409, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30690999

RESUMEN

Verticillium wilt caused by Verticillium dahliae is an important soilborne disease of pepper (Capsicum species) worldwide. Most commercial pepper cultivars lack resistance to this pathogen. Our objective was to identify resistance to two V. dahliae isolates in wild and cultivated Capsicum accessions from the core collection of the National Plant Germplasm System of the USDA. Screening of 397 Capsicum accessions against two V. dahliae isolates (Vdca59 and VdCf45) was performed in a greenhouse. Seventy-eight accessions selected from this screen were further evaluated in a follow-up experiment. In total, 21 (26.9%) and 13 (16.6%) Capsicum accessions tested were resistant to Verticillium wilt when inoculated with V. dahliae isolates VdCa59 and VdCf45, respectively. Eight accessions (Grif 9073, PI 281396, PI 281397, PI 438666, PI 439292, PI 439297, PI 555616, and PI 594125) were resistant to Verticillium wilt against both V. dahliae isolates. On the basis of Germplasm Resources Information Network data, two of the Capsicum annuum accessions (Grif 9073 and PI 439297) were also resistant to Phytophthora root rot disease. These sources of multiple disease resistance will be useful to pepper breeding programs.

12.
Plant Dis ; 99(7): 933-938, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30690967

RESUMEN

Verticillium is a genus that includes major vascular wilt pathogens. Recently, multilocus phylogenetic analyses of the genus identified five new species, including Verticillium isaacii and V. klebahnii, both of which occur in agricultural soils in coastal California and have been isolated from asymptomatic and diseased spinach and lettuce plants. Little data are available regarding their pathogenicity and virulence on a broader range of crops important to the region. Four isolates each of V. isaacii and V. klebahnii along with two reference isolates of V. dahliae races 1 and 2 were inoculated on eight crops (artichoke, cauliflower, eggplant, lettuce, pepper, tomato, spinach, and strawberry) in a greenhouse experiment. After 8 weeks, plants were assessed for disease severity to determine the relative host ranges of Verticillium isolates. Additionally, 13 lettuce lines resistant to race 1 and partially resistant to race 2 of V. dahliae were screened against V. isaacii and V. klebahnii to evaluate their responses. Three of four V. isaacii and four of four V. klebahnii isolates tested were nonpathogenic on all crops tested except those indicated below. One V. isaacii isolate caused wilt on artichoke and 'Salinas' lettuce and most isolates of both species caused varying degrees of Verticillium wilt on strawberry. Lettuce lines resistant to V. dahliae race 1 and partially resistant to V. dahliae race 2 also exhibited resistance to all of the isolates of V. isaacii and V. klebahnii. Thus, at least some isolates in the populations of V. isaacii and V. klebahnii have the potential to become significant pathogens of coastal California crops. However, resistance developed against V. dahliae also offers resistance to the pathogenic isolates of both species, at least in lettuce.

13.
Plant Dis ; 99(12): 1713-1720, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30699524

RESUMEN

Verticillium wilt, caused by Verticillium dahliae, is an important disease of cotton worldwide. Isolates of V. dahliae can be characterized as race 1 or race 2 based on the responses of differential cultivars of tomato and lettuce, or as defoliating or nondefoliating based on symptom expression in cotton. To investigate the frequency and distribution of races and defoliation phenotypes of cotton-associated V. dahliae, 317 isolates from China, Israel, Turkey, and the United States were tested by polymerase chain reaction (PCR) using defoliating, nondefoliating, and race 1- and race 2-specific primers DF/DR, NDF/NDR, VdAve1F/VdAve1R, and VdR2F/VdR2R, respectively. Of the total, 97.2% of isolates genotyped as defoliating were also characterized as race 2, while 90.8% of isolates genotyped as nondefoliating were also genotyped as race 1. To verify these results, three cotton cultivars-'FM 2484B2F' (highly resistant), '98M-2983' (highly susceptible), and 'CA4002' (partially resistant)-used as differentials were each inoculated with 10 isolates characterized by PCR: six defoliating/race 2 strains (GH1005, GH1021, HN, XJ2008, XJ592, and reference strain Ls17) and four nondefoliating/race 1 strains (GH1015, GH1016, GH1020, and reference strain Ls16). All defoliating/race 2 isolates except for Ls17 caused defoliation on 98M-2983 and CA4002. Isolate Ls17 caused defoliation on 98M-2983 only. The nondefoliating/race 1 isolates caused Verticillium wilt symptoms devoid of defoliation on 98M-2983. The greenhouse assays confirmed the molecular identification of race and defoliation phenotype. Although the existence of races has not been previously established among V. dahliae isolates from cotton, the long-established nondefoliating and defoliating population structure corresponded with V. dahliae races 1 and 2, respectively.

14.
PLoS Pathog ; 7(7): e1002137, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829347

RESUMEN

The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Fúngico/fisiología , Nicotiana/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Verticillium/genética , Verticillium/patogenicidad , Genómica , Nicotiana/genética
15.
Phytopathology ; 102(4): 443-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22236050

RESUMEN

Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.


Asunto(s)
Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Semillas/microbiología , Spinacia oleracea/microbiología , Verticillium/aislamiento & purificación , ADN de Hongos/análisis , ADN de Hongos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Verticillium/genética
16.
Planta ; 233(4): 649-60, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21153555

RESUMEN

Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated 30 diverse accessions of lettuce (Lactuca sativa L.) for their capacity to accumulate Se and their responses to different forms of Se in terms of plant growth, nutritional characteristics, and gene expression. Lettuce accessions responded differently to selenate and selenite treatment, and selenate is superior to selenite in inducing total Se accumulation. At least over twofold change in total Se levels between cultivars with high and low Se content was found. Synergistic relationship between Se and sulfur accumulation was observed in nearly all accessions at the selenate dosage applied. The change in shoot biomass varied between lettuce accessions and the forms of Se used. The growth-stimulated effect by selenate and the growth-inhibited effect by selenite were found to be correlated with the alteration of antioxidant enzyme activities. The different ability of lettuce accessions to accumulate Se following selenate treatment appeared to be associated with an altered expression of genes involved in Se/S uptake and assimilation. Our results provide important information for the effects of different forms of Se on plant growth and metabolism. They will also be of help in selecting and developing better cultivars for Se biofortification in lettuce.


Asunto(s)
Lactuca/metabolismo , Semillas/metabolismo , Selenio/metabolismo , Aminoácidos/metabolismo , Animales , Antioxidantes/metabolismo , Transporte Biológico/efectos de los fármacos , Biomasa , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Humanos , Lactuca/efectos de los fármacos , Lactuca/genética , Lactuca/crecimiento & desarrollo , Fenotipo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Semillas/efectos de los fármacos , Selenio/farmacología , Azufre/metabolismo
17.
Theor Appl Genet ; 123(4): 509-17, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21567237

RESUMEN

Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. Complete resistance to race 1 isolates is available in Lactuca sativa cultivar (cv.) La Brillante and understanding the genetic basis of this resistance will aid development of new resistant cultivars. F(1) and F(2) families from crosses between La Brillante and three iceberg cultivars as well as a recombinant inbred line population derived from L. sativa cv. Salinas 88 × La Brillante were evaluated for disease incidence and disease severity in replicated greenhouse and field experiments. One hundred and six molecular markers were used to generate a genetic map from Salinas 88 × La Brillante and for detection of quantitative trait loci. Segregation was consistent with a single dominant gene of major effect which we are naming Verticillium resistance 1 (Vr1). The gene described large portions of the phenotypic variance (R(2) = 0.49-0.68) and was mapped to linkage group 9 coincident with an expressed sequence tag marker (QGD8I16.yg.ab1) that has sequence similarity with the Ve gene that confers resistance to V. dahliae race 1 in tomato. The simple inheritance of resistance indicates that breeding procedures designed for single genes will be applicable for developing resistant cultivars. QGD8I16.yg.ab1 is a good candidate for functional analysis and development of markers suitable for marker-assisted selection.


Asunto(s)
Resistencia a la Enfermedad , Lactuca/genética , Enfermedades de las Plantas/genética , Verticillium/patogenicidad , Segregación Cromosómica/genética , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Genes de Plantas , Marcadores Genéticos , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Verticillium/crecimiento & desarrollo
18.
Fungal Genet Biol ; 47(5): 416-22, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20149887

RESUMEN

The fungal pathogen Verticillium dahliae has resulted in significant losses in numerous crops in coastal California, but lettuce remained unaffected until the mid-1990s. Since then outbreaks have decimated entire fields, but the causes of this sudden susceptibility of lettuce remain elusive. The population structure of V. dahliae isolated from coastal California (n=123) was investigated with 22 microsatellite markers, and compared with strains from tomato in central California (n=60), spinach seed imported from Washington State and Northern Europe (n=43), and ornamentals from Wisconsin (n=17). No significant differentiation was measured among hosts in coastal California or with the spinach and Wisconsin ornamental sampling groups. In contrast, the tomato sampling group was significantly differentiated. Significant gene flow was measured among the various geographic and host sampling groups, with the exception of tomato. Evidence of recombination in V. dahliae was identified through gametic disequilibrium and an exceedingly high genotypic diversity. The high incidence of V. dahliae in spinach seed and high planting density of the crop are sources of recurrent gene flow into coastal California, and may be associated with the recent outbreaks in lettuce.


Asunto(s)
Flujo Génico , Enfermedades de las Plantas/microbiología , Recombinación Genética , Verticillium/genética , Productos Agrícolas/microbiología , Regulación de la Expresión Génica de las Plantas , Estados Unidos , Verticillium/patogenicidad , Virulencia
19.
Plant Dis ; 93(7): 691-698, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30764360

RESUMEN

A soilless growth chamber assay was evaluated for rapid assessment of Verticillium wilt on lettuce (Lactuca sativa). Seedlings of the early flowering Plant Introduction (PI) 251246 were inoculated in tubes with conidial suspensions of isolates of Verticillium dahliae from lettuce or cauliflower. PI 251246 developed significant leaf and root symptoms by 21 days following inoculation with isolates of race 1 and race 2 from lettuce, but not following inoculation with an isolate from cauliflower. In contrast, leaf symptoms on the cultivar La Brillante and root symptoms on the cultivar Salinas were not easily differentiated from the symptoms observed on the noninoculated control treatments in the soilless assay, even at the highest inoculum concentration of 1 × 107 conidia/ml. Comparison of the soilless growth chamber assay and a soil-based greenhouse assay revealed a significantly higher proportion of PI 251246 with root vascular discoloration in the soilless assay compared with the soil-based greenhouse assay (χ2, 1 df = 8.9; P = 0.003). There is thus an advantage to using the soilless growth chamber assay with PI 251246. Compared with the soil-based greenhouse assay, the soilless assay reduced the time required for evaluation of Verticillium wilt symptoms on lettuce from about 90 days to 42 days.

20.
PLoS One ; 13(4): e0194635, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29664945

RESUMEN

Visual assessments are used for evaluating the quality of food products, such as fresh-cut lettuce packaged in bags with modified atmosphere. We have compared the accuracy and the reliability of visual evaluations of decay on fresh-cut lettuce performed with experienced and inexperienced raters. In addition, we have analyzed decay data from over 4.5 thousand bags to determine the optimum timing for evaluations to detect differences among accessions. Lin's concordance coefficient (ρc) that takes into consideration both the closeness of the data and the conformance to the identity line showed high repeatability (intra-rater reliability, ρc = 0.97), reproducibility (inter-rater reliability, ρc = 0.92), and accuracy (ρc = 0.96) for experienced raters. Inexperienced raters did not perform as well and their ratings showed decreased repeatability (ρc = 0.93), but even larger reduction in reproducibility (ρc = 0.80) and accuracy (ρc = 0.90). We have detected that 5.3% of ratings were outside of the 95% limits of agreement. These under- or overestimates were predominantly found for bags with intermediate levels of decay, which corresponds to the middle of the rating scale. This occurs because intermediate amounts of decay are more difficult to discriminate than extremes. The frequencies of aberrant ratings for experienced raters ranged from 0.6% to 4.4% (mean = 2.1%), for inexperienced raters the frequencies were substantially higher, ranging from 6.1% to 15.6% (mean = 9.4%). Therefore, we recommend that new raters receive training that includes practical examples in this range of decay, use of standard area diagrams, and continuing interaction with experienced raters (consultation during actual rating). Very high agreement among experienced raters indicate that visual ratings can be successfully used for evaluations of decay, until a more objective, rapid, and affordable method is developed. We recommend evaluating samples at multiple time points until 42 days after processing (about 80% decay on average) and then combining these individual ratings into the area under the decay progress stairs (AUDePS) score. Applying this approach, experienced evaluators can accurately detect difference among lettuce accessions and identify lettuce cultivars with reduced decay.


Asunto(s)
Análisis de los Alimentos/normas , Lactuca/metabolismo , Embalaje de Alimentos , Lactuca/normas , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA