Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neural Netw ; 20(4): 537-49, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17531441

RESUMEN

Artificial neural networks have proved an attractive approach to non-linear regression problems arising in environmental modelling, such as statistical downscaling, short-term forecasting of atmospheric pollutant concentrations and rainfall run-off modelling. However, environmental datasets are frequently very noisy and characterized by a noise process that may be heteroscedastic (having input dependent variance) and/or non-Gaussian. The aim of this paper is to review existing methodologies for estimating predictive uncertainty in such situations and, more importantly, to illustrate how a model of the predictive distribution may be exploited in assessing the possible impacts of climate change and to improve current decision making processes. The results of the WCCI-2006 predictive uncertainty in environmental modelling challenge are also reviewed, suggesting a number of areas where further research may provide significant benefits.


Asunto(s)
Simulación por Computador , Ambiente , Redes Neurales de la Computación , Incertidumbre , Bases de Datos como Asunto/estadística & datos numéricos , Toma de Decisiones , Modelos Estadísticos , Dinámicas no Lineales , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA