Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 19(2): 109-120, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29165426

RESUMEN

Mitochondrial function declines during ageing owing to the accumulation of deleterious mitochondrial genomes and damage resulting from the localized generation of reactive oxygen species, both of which are often exacerbated in diseases such as Parkinson disease. Cells have several mechanisms to assess mitochondrial function and activate a transcriptional response known as the mitochondrial unfolded protein response (UPRmt) when mitochondrial integrity and function are impaired. The UPRmt promotes cell survival and the recovery of the mitochondrial network to ensure optimal cellular function. Recent insights into the regulation, mechanisms and functions of the UPRmt have uncovered important and complex links to ageing and ageing-associated diseases. In this Review, we discuss the signal transduction mechanisms that regulate the UPRmt and the physiological consequences of its activation that affect cellular and organismal health during ageing.


Asunto(s)
Mitocondrias/fisiología , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Envejecimiento/fisiología , Animales , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Mutación/genética , Enfermedad de Parkinson/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
Mol Cell ; 68(4): 641-642, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149591

RESUMEN

Maintenance of mitochondrial function during stress conditions is vital for cellular survival. In this issue of Molecular Cell, Nielson et al. (2017) characterize a unique domain within Vms1 that allows this protein quality control component to specifically recognize damaged or stressed compartments within the mitochondrial network.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Esteroles/metabolismo , Animales , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Oxidación-Reducción
3.
Mol Cell ; 61(5): 677-682, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942672

RESUMEN

During mitochondrial dysfunction or the accumulation of unfolded proteins within mitochondria, cells employ a transcriptional response known as the mitochondrial unfolded protein response (UPR(mt)) to promote cell survival along with the repair and recovery of defective mitochondria. Considerable progress has been made in understanding how cells monitor mitochondrial function and activate the response, as well as in identifying scenarios where the UPR(mt) plays a protective role, such as during bacterial infection, hematopoietic stem cell maintenance, or general aging. To date, much of the focus has been on the role of the UPR(mt) in maintaining or re-establishing protein homeostasis within mitochondria by transcriptionally inducing mitochondrial molecular chaperone and protease genes. In this review, we focus on the metabolic adaptations or rewiring mediated by the UPR(mt) and how this may contribute to the resolution of mitochondrial unfolded protein stress and cell-type-specific physiology.


Asunto(s)
Metabolismo Energético , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Supervivencia Celular , Senescencia Celular , Humanos , Inmunidad Innata , Mitocondrias/inmunología , Mitocondrias/patología , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología
4.
Mol Cell ; 58(1): 123-33, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25773600

RESUMEN

Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , ADN Mitocondrial/metabolismo , Genoma Mitocondrial , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Ciclo del Ácido Cítrico/genética , ADN Mitocondrial/genética , Genoma de los Helmintos , Mitocondrias/genética , Datos de Secuencia Molecular , Fosforilación Oxidativa , Pliegue de Proteína , Estabilidad Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Respuesta de Proteína Desplegada
5.
Hepatology ; 74(1): 233-247, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33336367

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS: Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.


Asunto(s)
Adenilosuccinato Liasa/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Purinas/biosíntesis , Adenosina Trifosfato/biosíntesis , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tasa de Supervivencia
7.
Nature ; 533(7603): 416-9, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27135930

RESUMEN

Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single heteroplasmic mtDNA deletion. More broadly, mtDNA deletion accumulation has been observed in individual muscle cells and dopaminergic neurons during ageing. It is unclear how mtDNA deletions are tolerated or how they are propagated in somatic cells. One mechanism by which cells respond to OXPHOS dysfunction is by activating the mitochondrial unfolded protein response (UPR(mt)), a transcriptional response mediated by the transcription factor ATFS-1 that promotes the recovery and regeneration of defective mitochondria. Here we investigate the role of ATFS-1 in the maintenance and propagation of a deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain that stably expresses wild-type mtDNA and mtDNA with a 3.1-kilobase deletion (∆mtDNA) lacking four essential genes. The heteroplasmic strain, which has 60% ∆mtDNA, displays modest mitochondrial dysfunction and constitutive UPR(mt) activation. ATFS-1 impairment reduced the ∆mtDNA nearly tenfold, decreasing the total percentage to 7%. We propose that in the context of mtDNA heteroplasmy, UPR(mt) activation caused by OXPHOS defects propagates or maintains the deleterious mtDNA in an attempt to recover OXPHOS activity by promoting mitochondrial biogenesis and dynamics.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Mitocondrial/genética , Eliminación de Gen , Genes Esenciales/genética , Mitocondrias/patología , Biogénesis de Organelos , Fosforilación Oxidativa , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850535

RESUMEN

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Mitocondrias/metabolismo , Infecciones por Pseudomonas/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa , Ubiquitina-Proteína Ligasas/metabolismo
9.
PLoS Genet ; 15(1): e1007935, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668573

RESUMEN

Nuclear hormone receptors (NHRs) are ligand-gated transcription factors that control adaptive host responses following recognition of specific endogenous or exogenous ligands. Although NHRs have expanded dramatically in C. elegans compared to other metazoans, the biological function of only a few of these genes has been characterized in detail. Here, we demonstrate that an NHR can activate an anti-pathogen transcriptional program. Using genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation-sequencing, we show that, in the presence of an immunostimulatory small molecule, NHR-86 binds to the promoters of immune effectors to activate their transcription. NHR-86 is not required for resistance to the bacterial pathogen Pseudomonas aeruginosa at baseline, but activation of NHR-86 by this compound drives a transcriptional program that provides protection against this pathogen. Interestingly, NHR-86 targets immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and modulates the transcription of these infection response genes directly. These findings characterize a new transcriptional regulator in C. elegans that can induce a protective host response towards a bacterial pathogen.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Inmunidad Innata/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Receptores Citoplasmáticos y Nucleares/genética , Secuencia de Aminoácidos/genética , Animales , Caenorhabditis elegans/microbiología , Regulación de la Expresión Génica , Mutación , Pseudomonas aeruginosa/patogenicidad , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Proc Natl Acad Sci U S A ; 116(44): 22322-22330, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611372

RESUMEN

Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Metabolismo de los Lípidos , Infecciones por Pseudomonas/genética , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Inmunidad Innata , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Factores de Transcripción/genética , Transcriptoma , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Nature ; 516(7531): 414-7, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25274306

RESUMEN

Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial function is evaluated by monitoring mitochondrial protein import efficiency of the transcription factor ATFS-1, which mediates the mitochondrial unfolded protein response (UPR(mt)). During mitochondrial stress, mitochondrial import is impaired, allowing ATFS-1 to traffic to the nucleus where it mediates a transcriptional response to re-establish mitochondrial homeostasis. Here we examined the role of ATFS-1 in Caenorhabditis elegans during pathogen exposure, because during mitochondrial stress ATFS-1 induced not only mitochondrial protective genes but also innate immune genes that included a secreted lysozyme and anti-microbial peptides. Exposure to the pathogen Pseudomonas aeruginosa caused mitochondrial dysfunction and activation of the UPR(mt). C. elegans lacking atfs-1 were susceptible to P. aeruginosa, whereas hyper-activation of ATFS-1 and the UPR(mt) improved clearance of P. aeruginosa from the intestine and prolonged C. elegans survival in a manner mainly independent of known innate immune pathways. We propose that ATFS-1 import efficiency and the UPR(mt) is a means to detect pathogens that target mitochondria and initiate a protective innate immune response.


Asunto(s)
Caenorhabditis elegans/inmunología , Inmunidad Innata/inmunología , Mitocondrias/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Interacciones Huésped-Patógeno/inmunología , Pseudomonas aeruginosa/fisiología , Estrés Fisiológico/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Crit Rev Biochem Mol Biol ; 52(3): 304-313, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276702

RESUMEN

Mitochondrial function is central to many different processes in the cell, from oxidative phosphorylation to the synthesis of iron-sulfur clusters. Therefore, mitochondrial dysfunction underlies a diverse array of diseases, from neurodegenerative diseases to cancer. Stress can be communicated to the cytosol and nucleus from the mitochondria through many different signals, and in response the cell can effect everything from transcriptional to post-transcriptional responses to protect the mitochondrial network. How these responses are coordinated have only recently begun to be understood. In this review, we explore how the cell maintains mitochondrial function, focusing on the mitochondrial unfolded protein response (UPRmt), a transcriptional response that can activate a wide array of programs to repair and restore mitochondrial function.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Respuesta de Proteína Desplegada , Animales , Humanos , Mitocondrias/patología , Neoplasias/patología , Enfermedades Neurodegenerativas/patología
15.
Am J Physiol Heart Circ Physiol ; 317(2): H472-H478, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274354

RESUMEN

The mitochondrial unfolded protein response (UPRmt) is a cytoprotective signaling pathway triggered by mitochondrial dysfunction. UPRmt activation upregulates chaperones, proteases, antioxidants, and glycolysis at the gene level to restore proteostasis and cell energetics. Activating transcription factor 5 (ATF5) is a proposed mediator of the mammalian UPRmt. Herein, we hypothesized pharmacological UPRmt activation may protect against cardiac ischemia-reperfusion (I/R) injury in an ATF5-dependent manner. Accordingly, in vivo administration of the UPRmt inducers oligomycin or doxycycline 6 h before ex vivo I/R injury (perfused heart) was cardioprotective in wild-type but not global Atf5-/- mice. Acute ex vivo UPRmt activation was not cardioprotective, and loss of ATF5 did not impact baseline I/R injury without UPRmt induction. In vivo UPRmt induction significantly upregulated many known UPRmt-linked genes (cardiac quantitative PCR and Western blot analysis), and RNA-Seq revealed an UPRmt-induced ATF5-dependent gene set, which may contribute to cardioprotection. This is the first in vivo proof of a role for ATF5 in the mammalian UPRmt and the first demonstration that UPRmt is a cardioprotective drug target.NEW & NOTEWORTHY Cardioprotection can be induced by drugs that activate the mitochondrial unfolded protein response (UPRmt). UPRmt protection is dependent on activating transcription factor 5 (ATF5). This is the first in vivo evidence for a role of ATF5 in the mammalian UPRmt.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Doxiciclina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Oligomicinas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Factores de Transcripción Activadores/deficiencia , Factores de Transcripción Activadores/genética , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
16.
Semin Cancer Biol ; 47: 43-49, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28499833

RESUMEN

Mitochondria form a cellular network of organelles, or cellular compartments, that efficiently couple nutrients to energy production in the form of ATP. As cancer cells rely heavily on glycolysis, historically mitochondria and the cellular pathways in place to maintain mitochondrial activities were thought to be more relevant to diseases observed in non-dividing cells such as muscles and neurons. However, more recently it has become clear that cancers rely heavily on mitochondrial activities including lipid, nucleotide and amino acid synthesis, suppression of mitochondria-mediated apoptosis as well as oxidative phosphorylation (OXPHOS) for growth and survival. Considering the variety of conditions and stresses that cancer cell mitochondria may incur such as hypoxia, reactive oxygen species and mitochondrial genome mutagenesis, we examine potential roles for a mitochondrial-protective transcriptional response known as the mitochondrial unfolded protein response (UPRmt) in cancer cell biology.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Respuesta de Proteína Desplegada , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Transducción de Señal , Estrés Fisiológico
17.
J Biol Chem ; 292(33): 13500-13506, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28687630

RESUMEN

Mitochondria are multifaceted and indispensable organelles required for cell performance. Accordingly, dysfunction to mitochondria can result in cellular decline and possibly the onset of disease. Cells use a variety of means to recover mitochondria and restore homeostasis, including the activation of retrograde pathways such as the mitochondrial unfolded protein response (UPRmt). In this Minireview, we will discuss how cells adapt to mitochondrial stress through UPRmt regulation. Furthermore, we will explore the current repertoire of biological functions that are associated with this essential stress-response pathway.


Asunto(s)
Alostasis , Mitocondrias/metabolismo , Modelos Biológicos , Transducción de Señal , Estrés Fisiológico , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Genoma Mitocondrial , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunidad Innata , Mitocondrias/enzimología
18.
Mol Cell ; 37(4): 529-40, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188671

RESUMEN

Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear-encoded mitochondrial chaperone genes in C. elegans (UPR(mt)). Here, we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPR(mt) and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP dependent and required HAF-1 and the protease ClpP. Defective UPR(mt) signaling in the haf-1-deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPR(mt). These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPR(mt) signaling across the mitochondrial inner membrane.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Transportadoras de Casetes de Unión a ATP/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Mitocondriales/metabolismo , Pliegue de Proteína , Interferencia de ARN , Factores de Transcripción/genética
19.
Mol Cell ; 38(2): 291-304, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417606

RESUMEN

Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence of enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.


Asunto(s)
Endorribonucleasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Endorribonucleasas/genética , Ligandos , Glicoproteínas de Membrana/genética , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA