Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neuron ; 102(3): 636-652.e7, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30905392

RESUMEN

The thalamic parafascicular nucleus (PF), an excitatory input to the basal ganglia, is targeted with deep-brain stimulation to alleviate a range of neuropsychiatric symptoms. Furthermore, PF lesions disrupt the execution of correct motor actions in uncertain environments. Nevertheless, the circuitry of the PF and its contribution to action selection are poorly understood. We find that, in mice, PF has the highest density of striatum-projecting neurons among all sub-cortical structures. This projection arises from transcriptionally and physiologically distinct classes of PF neurons that are also reciprocally connected with functionally distinct cortical regions, differentially innervate striatal neurons, and are not synaptically connected in PF. Thus, mouse PF contains heterogeneous neurons that are organized into parallel and independent associative, limbic, and somatosensory circuits. Furthermore, these subcircuits share motifs of cortical-PF-cortical and cortical-PF-striatum organization that allow each PF subregion, via its precise connectivity with cortex, to coordinate diverse inputs to striatum.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Núcleos Talámicos Intralaminares/citología , Neuronas/citología , Animales , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Perfilación de la Expresión Génica , Núcleos Talámicos Intralaminares/fisiología , Ratones , Vías Nerviosas , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Análisis de la Célula Individual , Tálamo/citología , Tálamo/fisiología
2.
Nat Neurosci ; 20(8): 1180-1188, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628101

RESUMEN

Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Fibras Ópticas , Estimulación Luminosa , Animales , Femenino , Masculino , Ratones Transgénicos , Optogenética/métodos , Estimulación Luminosa/métodos , Rodopsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA