Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(4): 862-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26504224

RESUMEN

Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator-prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes.


Asunto(s)
Carnívoros/fisiología , Carnivoría , Ecosistema , Extinción Biológica , África , Américas , Distribución Animal , Animales , Asia , Biodiversidad , Tamaño Corporal , Europa (Continente) , Predicción , Fósiles , Mamuts , Mastodontes , Densidad de Población , Conducta Predatoria
2.
J Anim Ecol ; 87(4): 974-994, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29488217

RESUMEN

Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts.


Asunto(s)
Biodiversidad , Ecosistema , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Bases de Datos como Asunto
3.
Oecologia ; 178(2): 497-509, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25874858

RESUMEN

Species loss can result in changes in assemblage structure and ecosystem function through ecological cascades. Australian vertebrate assemblages changed significantly following European colonisation, which resulted in the establishment of invasive vertebrates and the loss of native marsupials, many of which consume invertebrates. Conservation focusses on the removal of invasive carnivores and the reintroduction of regionally extinct species to fenced sites, resulting in what could be considered a reconstruction of pre-European vertebrate assemblages. In semi-arid Australian spinifex mallee ecosystems, we asked: (1) what is the effect of reconstructed pre-European vertebrate assemblages on native arachnid assemblages? and (2) what direct or indirect mechanisms (predation, disturbance and/or competition) could plausibly be responsible for these effects? We compared sites with reconstructed vertebrate assemblages with paired control sites. Arachnids were sampled using pitfall trapping and direct searching. Hypotheses regarding mechanisms were tested using scat analysis (predation) and by comparing burrow depth (disturbance) and scorpion mass (competition) between control and reconstructed sites. The dominant dune scorpion, Urodacus yaschenkoi, was less abundant and a wolf spider (Lycosa gibsoni species group) more abundant in reconstructed sites. Differences in spider assemblage composition were marginally non-significant. Scat analysis confirmed native vertebrate predation on scorpions and we found no evidence that competition or disturbance affected scorpions. We, thus, suggest that changes in spider assemblages may have resulted from ecological cascades via decreases in dune scorpions. The loss of omnivorous mammals and other changes associated with the invasion of carnivores may, therefore, have had broad-reaching consequences for native arachnid assemblages in Australian ecosystems.


Asunto(s)
Arácnidos , Biodiversidad , Ecosistema , Extinción Biológica , Especies Introducidas , Conducta Predatoria , Vertebrados , Animales , Australia , Carnivoría , Ecología , Europa (Continente) , Marsupiales , Poaceae , Dinámica Poblacional , Escorpiones , Arañas
4.
Animals (Basel) ; 13(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37238064

RESUMEN

The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.

5.
Curr Biol ; 29(14): R681-R682, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336082

RESUMEN

Protected areas are critical to conservation efforts in the face of rapid biodiversity declines [1]. Yet the resources for conservation are often limited and shared amongst many competing priorities [2]. As a consequence, even basic monitoring surveys are absent within most protected areas [3]. Although a range of wildlife monitoring methods exist, considerable focused survey effort is often required to yield accurate and precise estimates [4]. This makes monitoring difficult to sustain or replicate, limiting access to the data required for evidence-based conservation decisions. Citizen-scientists have been proposed as an important complement to the finite resources available for basic monitoring within protected areas [5]; however, the full potential of this approach has yet to be realised. Wildlife tourists and guides are especially focussed on encountering and photographing fauna and flora, yet the data collected in these efforts is rarely harnessed for conservation monitoring within protected areas. A detailed understanding of photographic tourism's potential role in wildlife monitoring has been lacking, but is essential for the development of new tools to harness the data being collected through tourism. Here, we demonstrate that tourist-contributed data can aid wildlife monitoring in protected areas by providing population estimates of large carnivores comparable to those from traditional survey methods. Our approach could capitalize upon the immense number of wildlife photographs being taken daily as part of the global > 30-billion USD, wildlife-based tourism industry.


Asunto(s)
Animales Salvajes , Ciencia Ciudadana , Conservación de los Recursos Naturales/métodos , Fotograbar , Viaje , Animales
6.
PLoS One ; 13(12): e0208727, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532165

RESUMEN

Little is known of the resources that limit or promote the rapidly expanding golden jackal (Canis aureus) population in Europe. We hypothesised that in an area of intensive big game hunting, a reduction of the main food resource (human subsidised big game viscera) would result in dietary switching. We used multivariate analyses to test whether the dietary composition of 200 jackal stomachs varied between two 2-yearly survey occasions, the first without big game viscera removal (availability of 68 kg viscera/year/km2) followed by a period with viscera removal (minimum of 50 kg of viscera/year/km2 removed). The proportion of empty stomachs and the stomach wet content weight did not differ between the two periods. Even after the reduction of food subsidies, the primary food of jackals was viscera and carrion from wild ungulates (frequency of occurrence: 45% vs. 30%; wet weight: 55% vs. 29%, respectively), and scavenging was not affected by season or sex. Log-linear analysis of frequency data revealed no significant differences between survey occasions in consumption of either food type. MANCOVA of wet weight data revealed that in the first period with food subsidies jackals consumed a higher proportion of adult wild boar (11.6% vs. 1.3%; from predation or scavenging), while juvenile wild boar (0 vs. 11.8%; from predation or scavenging), domestic animals (0.8% vs. 6.2%; mostly from scavenging) and invertebrates (2.6% vs. 4.1%) increased in the second period. The stomachs in the second survey occasion contained more varied food items, but the trophic niche was not significantly wider. The feeding responses of this mesopredator to the reduction of food subsidies were less pronounced than expected. Because in high big game density areas, wild ungulate carrion from different mortality causes are available in high quantities throughout the year, predator populations can be maintained despite the high amount of viscera removal.


Asunto(s)
Conducta Alimentaria , Chacales , Animales , Dieta , Femenino , Alimentos , Actividades Humanas , Hungría , Masculino , Conducta Predatoria , Estaciones del Año
7.
PLoS One ; 9(2): e88349, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24533080

RESUMEN

The endangered snow leopard is a large felid that is distributed over 1.83 million km(2) globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.


Asunto(s)
Conducta de Elección , Felidae/fisiología , Conducta Predatoria , Animales , Biomasa , Tamaño Corporal , Conservación de los Recursos Naturales , Ecología , Especies en Peligro de Extinción , Conducta Alimentaria , Femenino , Geografía , Modelos Lineales , Masculino , Marmota , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA