Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Int J Gen Med ; 17: 37-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204493

RESUMEN

Purpose: Genetic mutations are major factors in the diagnosis and prognosis of leukemia, and it is difficult to assess these variants using single-gene analysis. Therefore, this study aimed to develop a fast and cost-effective method for genetic screening of myeloid malignancies using a customized next-generation sequencing (NGS) panel. Patients and Methods: A customized myeloid panel was designed and investigated in 15 acute myeloid leukemia patients. The panel included 11 genes that were most commonly mutated in myeloid malignancies. This panel was designed to sequence the complete genome of CALR, IDH1, IDH2, JAK2, FLT3, NPM1, MPL, TET2, SF3B1, TP53, and MLL. Results: Among the 15 patients, 14 actual pathogenic variants were identified in nine samples, and negative results were found in six samples. Positive findings were observed for JAK2, FLT3, SF3B1, and TET2. Interestingly, non-classical FLT3 mutations (c.1715A>C, c.2513delG, and c.2507dupT) were detected in patients who were negative for FLT3-ITD and TKD by routine molecular results. All identified variants were pathogenic, and the high coverage of the assay allowed us to predict variants at a low frequency (1%) with 1000x coverage. Conclusion: Utilizing a custom panel allowed us to identify variants that were not detected by routine tests or those that were not routinely investigated. Using the costuming panel will enable us to sequence all genes and discover new potential pathogenic variants that are not possible with other commercially available panels that focus only on hotspot regions. This study's strength in utilizing NGS and implanting a customized panel to identify new pathogenic variants that might be common in our population and important in routine diagnosis for providing optimal healthcare for personalized medicine.

2.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679271

RESUMEN

Despite the advanced development in the field of drug discovery and design, fighting infectious and non-infectious diseases remains a major worldwide heath challenge due to the limited activity of currently used drugs. Nevertheless, in recent years, the approach of designing nanoparticles for therapeutic applications has gained more interest and promise for future use. Thus, the current study is focused on the evaluation of A. judaica extract and chitosan nanoparticles loaded extract (CNPsLE) for potential antimicrobial and anticancer activities. The HPLC analysis of the extract has shown the presence of various phenolic and flavonoid compounds, including kaempferol (3916.34 µg/mL), apigenin (3794.32 µg/mL), chlorogenic acid (1089.58 µg/mL), quercetin (714.97 µg/mL), vanillin (691.55 µg/mL), naringenin (202.14 µg/mL), and rutin (55.64 µg/mL). The extract alone showed higher MIC values against B. subtilis, E. coli, S. aureus, K. pneumonia, and C. albicans (62.5, 15.65, 15.62, 31.25, and 31.25 µg/mL, respectively), whereas lower MIC values were observed when the extract was combined with CNPsLE (0.97, 1.95, 3.9, 4.1, and 15.62 µg/mL, respectively). The extract exhibited low cytotoxicity against normal Vero cells with IC50 173.74 µg/mL in comparison with the cytotoxicity of the CNPsLE (IC50, 73.89 µg/mL). However, CNPsLE showed more selective toxicity against the human prostate cancer cell line (PC3) with IC50 of 20.8 µg/mL than the extract alone with 76.09 µg/mL. In the docking experiments, kaempferol and apigenin were revealed to be suitable inhibitors for prostate cancer (2Q7L). Overall, the obtained data highlighted the promising potential therapeutic use of CNPsLE as an anticancer and antimicrobial agent.

3.
Life (Basel) ; 13(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37511887

RESUMEN

It is worth noting that laurel (Laurus nobilis L.) contains several pharmacologically and nutritionally active compounds that may differ according to the pretreatment process. The current study is designed to clarify the effect of moist heat on the phenolic and flavonoid constituents and anti-Helicobacter pylori, antioxidant, antidiabetic, and anti-Alzheimer's activities of laurel leaf extract (LLE). Unmoist-heated (UMH) and moist-heated (MH) LLEs showed the presence of numerous flavonoid and phenolic constituents, although at different levels of concentration. MH significantly induced (p < 0.05) the occurrence of most compounds at high concentrations of 5655.89 µg/mL, 3967.65 µg/mL, 224.80 µg/mL, 887.83 µg/mL, 2979.14 µg/mL, 203.02 µg/mL, 284.65 µg/mL, 1893.66 µg/mL, and 187.88 µg/mL, unlike the detection at low concentrations of 3461.19 µg/mL, 196.96 µg/mL, 664.12 µg/mL, 2835.09 µg/mL, 153.26 µg/mL, 254.43 µg/mL, 1605.00 µg/mL, 4486.02 µg/mL, and 195.60 µg/mL using UMH, for naringenin, methyl gallate, caffeic acid, rutin, ellagic acid, coumaric acid, vanillin, ferulic acid, and hesperetin, respectively. Chlorogenic acid, syringic acid, and daidzein were detected in the UMH LLE but not in the MH LLE, unlike pyrocatechol. The anti-H. pylori activity of the UMH LLE was lower (23.67 ± 0.58 mm of inhibition zone) than that of the MH LLE (26.00 ± 0.0 mm of inhibition zone). Moreover, the values of MIC and MBC associated with the MH LLE were very low compared to those of the UMH LLE. Via MBC/MIC index calculation, the UMH and MH LLEs showed cidal activity. The MH LLE exhibited higher anti-biofilm activity (93.73%) compared to the anti-biofilm activity (87.75%) of the MH LLE against H. pylori. The urease inhibition percentage was more affected in the UMH LLE compared to the MH LLE, with significant (p < 0.05) IC50 values of 34.17 µg/mL and 91.11 µg/mL, respectively. Promising antioxidant activity was documented with a very low value of IC50 (3.45 µg/mL) for the MH LLE compared to the IC50 value of 4.69 µg/mL for the UMH LLE and the IC50 value of 4.43 µg/mL for ascorbic acid. The MH LLE showed significantly higher (p < 0.05) inhibition of α-glucosidase and butyrylcholinesterase activities, with IC50 values of 9.9 µg/mL and 17.3 µg/mL, respectively, compared to those of the UMH LLE at 18.36 µg/mL and 28.92 µg/mL. The molecular docking of naringenin showed good docking scores against acetylcholinesterase 1E66 and butyrylcholinesterase 6EMI, indicating that naringenin is an intriguing candidate for additional research as a possible medication for Alzheimer's disease.

4.
Front Chem ; 11: 1192074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153524

RESUMEN

Cancer management is highly dependent on the immune status of the patient. During the COVID-19 pandemic, a large number of people suffered from anxiety and depression, especially cancer patients. The effect of depression on breast cancer (BC) and prostate cancer (PC) patients, during the pandemic has been analyzed in this study. Levels of proinflammatory cytokines (IFN-γ, TNF-α, and IL-6) and oxidative stress markers malondialdehyde (MDA) and carbonyl content (CC) were estimated in patients' serum samples. Serum antibodies against in vitro hydroxyl radical (•OH) modified pDNA (•OH-pDNA-Abs) were estimated using direct binding and inhibition ELISA. Cancer patients showed increased levels of proinflammatory cytokines (IFN-γ, TNF-α, and IL-6) and oxidative stress markers (MDA and CC levels), which were further significantly enhanced in cancer patients with depression compared to normal healthy (NH) individuals. Increased levels of •OH-pDNA-Abs were detected in breast cancer (0.506 ± 0.063) and prostate cancer (0.441 ± 0.066) patients compared to NH subjects. Serum antibodies were found to be significantly elevated in BC patients with depression (BCD) (0.698 ± 0.078) and prostate cancer patients with depression (PCD) (0.636 ± 0.058). Inhibition ELISA also exhibited significantly high percent inhibition in BCD (68.8% ± 7.8%) and PCD (62.9% ± 8.3%) subjects compared to BC (48.9% ± 8.1%), and PC (43.4% ± 7.5%) subjects. Cancer is characterized by enhanced oxidative stress and increased inflammation, which may be exaggerated with COVID-19 related depression. High oxidative stress and compromised antioxidant homeostasis exerts alterations in DNA, leading to formation of neo-antigens, subsequently leading to the generation of antibodies. COVID-19 pandemic related depression needs to be addressed globally for improved cancer patient care and cancer disease management.

5.
Drug Deliv ; 30(1): 2164094, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36588399

RESUMEN

Low bone mass, degeneration of bone tissue, and disruption of bone microarchitecture are all symptoms of the disease osteoporosis, which can decrease bone strength and increase the risk of fractures. The main objective of the current study was to use a phospholipid-based phase separation in-situ gel (PPSG) in combination with an alendronate sodium nanoemulsion (ALS-NE) to help prevent bone resorption in rats. The effect of factors such as concentrations of the ALS aqueous solution, surfactant Plurol Oleique CC 497, and Maisine CC oil on nanoemulsion characteristics such as stability index and globular size was investigated using an l-optimal coordinate exchange statistical design. Injectable PPSG with the best nanoemulsion formulation was tested for viscosity, gel strength, water absorption, and in-vitro ALS release. ALS retention in the rats' muscles was measured after 30 days. The droplet size and stability index of the optimal nanoemulsion were 90 ± 2.0 nm and 85 ± 1.9%, respectively. When mixed with water, the optimal ALS-NE-loaded PPSG became viscous and achieved 36 seconds of gel strength, which was adequate for an injectable in-situ formulation. In comparison with the ALS solution-loaded in-situ gel, the newly created optimal ALS-NE-loaded PPSG produced the sustained and regulated release of ALS; hence, a higher percentage of ALS remained in rats' muscles after 30 days. PPSG that has been loaded with an ALS-NE may therefore be a more auspicious, productive, and effective platform for osteoporosis treatment than conventional oral forms.


Asunto(s)
Osteoporosis , Animales , Ratas , Alendronato , Emulsiones , Osteoporosis/tratamiento farmacológico , Agua
6.
Pharmaceutics ; 15(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36839721

RESUMEN

The current study was designed to formulate ternary solid dispersions (TSDs) of dexibuprofen (Dex) by solvent evaporation to augment the solubility and dissolution profile, in turn providing gastric protection and effective anti-inflammatory activity. Initially, nine formulations (S1 to S9) of binary solid dispersions (BSDs) were developed. Formulation S1 comprising a 1:1 weight ratio of Dex and Syloid 244FP® was chosen as the optimum BSD formulation due to its better solubility profile. Afterward, 20 TSD formulations were developed using the optimum BSD. The formulation containing Syloid 244FP® with 40% Gelucire 48/16® (S18) and Poloxamer 188® (S23) successfully enhanced the solubility by 28.23 and 38.02 times, respectively, in pH 6.8, while dissolution was increased by 1.99- and 2.01-fold during the first 5 min as compared to pure drug. The in vivo gastroprotective study in rats suggested that the average gastric lesion index was in the order of pure Dex (8.33 ± 2.02) > S1 (7 ± 1.32) > S18 (2.17 ± 1.61) > S23 (1.83 ± 1.04) > control (0). The in vivo anti-inflammatory study in rats revealed that the percentage inhibition of swelling was in the order of S23 (71.47 ± 2.16) > S18 (64.8 ± 3.79) > S1 (54.14 ± 6.78) > pure drug (18.43 ± 2.21) > control (1.18 ± 0.64) after 6 h. ELISA results further confirmed the anti-inflammatory potential of the developed formulation, where low levels of IL-6 and TNF alpha were reported for animals treated with S23. Therefore, S23 could be considered an effective formulation that not only enhanced the solubility and bioavailability but also reduced the gastric irritation of Dex.

7.
Biomedicines ; 11(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371746

RESUMEN

The presence of COVID-19 antibodies in the maternal circulation is assumed to be protective for newborns against SARS-CoV-2 infection. We investigated whether maternal COVID-19 antibodies crossed the transplacental barrier and whether there was any difference in the hematological parameters of neonates born to mothers who recovered from COVID-19 during pregnancy. The cross-sectional study was conducted at the Saidu Group of Teaching Hospitals, located in Swat, Khyber Pakhtunkhwa. After obtaining written informed consent, 115 healthy, unvaccinated mother-neonate dyads were included. A clinical history of COVID-19-like illness, laboratory-confirmed diagnosis, and contact history were obtained. Serum samples from mothers and neonates were tested for SARS-CoV-2 anti-receptor-binding domain (anti-RBD) IgG antibodies. Hematological parameters were assessed with complete blood counts (CBC) and peripheral blood smear examinations. The study population consisted of 115 mothers, with a mean age of 29.44 ± 5.75 years, and most women (68/115 (59.1%)) were between 26 and 35 years of age. Of these mothers, 88/115 (76.5 percent) tested positive for SARS-CoV-2 anti-RBD IgG antibodies, as did 83/115 (72.2 percent) neonatal cord blood samples. The mean levels of SARS-CoV-2 IgG antibodies in maternal and neonatal blood were 19.86 ± 13.82 (IU/mL) and 16.16 ± 12.90 (IU/mL), respectively, indicating that maternal antibodies efficiently crossed the transplacental barrier with an antibody transfer ratio of 0.83. The study found no significant difference in complete blood count (CBC) parameters between seropositive and seronegative mothers, nor between neonates born to seropositive and seronegative mothers.

8.
Biomedicines ; 10(11)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36428553

RESUMEN

The epithelial cell adhesion molecule (EpCAM) is considered an essential proliferation signature in cancer. In the current research study, qPCR induced expression of EpCAM was noted in acute lymphoblastic leukemia (ALL) cases. Costunolide, a sesquiterpene lactone found in crepe ginger and lettuce, is a medicinal herb with anticancer properties. Expression of EpCAM and its downstream target genes (Myc and TERT) wasdownregulated upon treatment with costunolide in Jurkat cells. A significant change in the telomere length of Jurkat cells was not noted at 72 h of costunolide treatment. An in silico study revealed hydrophobic interactions between EpCAM extracellular domain and Myc bHLH with costunolide. Reduced expression of NFκB, a transcription factor of EpCAM, Myc, and TERT in costunolide-treated Jurkat cells, suggested that costunolide inhibits gene expression by targeting NFκB and its downstream targets. Overall, the study proposes that costunolide could be a promising therapeutic biomolecule for leukemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA