Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 8(41): 38013-38024, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867721

RESUMEN

Visual process monitoring would provide more directly appreciable and more easily comprehensible information about the process operating status as well as clear depictions of the occurrence path of faults; however, as a more challenging task, it has been sporadically discussed in the research literature on conventional process monitoring. In this paper, the Data-Dependent Kernel Discriminant Analysis (D2K-DA) model is proposed. A special data-dependent kernel function is constructed and learned from the measured data, so that the low-dimensional visualizations are guaranteed, combined with intraclass compactness, interclass separability, local geometry preservation, and global geometry preservation. The new optimization is innovatively designed by exploiting both discriminative information and t-distributed geometric similarities. On the construction of novel indexes for visualization, experiments of visual monitoring tasks on simulated and real-life industrial processes illustrate the merits of the proposed method.

2.
Soft comput ; : 1-31, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37362274

RESUMEN

Crow search algorithm (CSA), as a new swarm intelligence algorithm that simulates the crows' behaviors of hiding and tracking food in nature, performs well in solving many optimization problems. However, while handling complex and high-dimensional global optimization problems, CSA is apt to fall into evolutionary stagnation and has slow convergence speed, low accuracy, and weak robustness. This is mainly because it only utilizes a single search stage, where position updating relies on random following among individuals or arbitrary flight of individuals. To address these deficiencies, a CSA with multi-stage search integration (MSCSA) is presented. Chaos and multiple opposition-based learning techniques are first introduced to improve original population quality and ergodicity. The free foraging stage based on normal random distribution and Lévy flight is designed to conduct local search for enhancing the solution accuracy. And the following stage using mixed guiding individuals is presented to perform global search for expanding the search space through tracing each other among individuals. Finally, the large-scale migration stage based on the best individual and mixed guiding individuals concentrates on increasing the population diversity and helping the population jump out of local optima by moving the population to a promising area. All of these strategies form multi-level and multi-granularity balances between global exploration and local exploitation throughout the evolution. The proposed MSCSA is compared with a range of other algorithms, including original CSA, three outstanding variants of CSA, two classical meta-heuristics, and six state-of-the-art meta-heuristics covering different categories. The experiments are conducted based on the complex and high-dimensional benchmark functions CEC 2017 and CEC 2010, respectively. The experimental and statistical results demonstrate that MSCSA is competitive for tackling large-scale complicated problems, and is significantly superior to the competitors.

3.
Math Biosci Eng ; 19(4): 3472-3486, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35341260

RESUMEN

In the chemical industry, the ethylene cracking furnace is the core ethylene production equipment, and its safe and stable operation must be ensured. The fire gate is the only observation window to understand the high temperature operating conditions inside the cracking furnace. In the automatic monitoring process of ethylene production, the accurate identification of the opening and closing status of the fire door is particularly important. Through the research on the ethylene cracking production process, based on deep learning, the open and closed state of the fire gate is recognized and studied. First of all, a series of preprocessing and augmentation are performed on the originally collected image data of the fire gate. Then, a recognition model is constructed based on convolutional neural network, and the preprocessed data is used to train the model. Optimization algorithms such as Adam are used to update the model parameters to improve the generalization ability of the model. Finally, the proposed recognition model is verified based on the test set and is compared with the transfer learning model. The experimental results show that the proposed model can accurately recognize the open state of the fire door and is more stable than the migration learning model.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Etilenos , Redes Neurales de la Computación
4.
Math Biosci Eng ; 19(9): 9168-9199, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35942754

RESUMEN

This study aimed to develop a 5G + "mixed computing" + deep learning-based next-generation intelligent health-monitoring platform for an ethylene cracking furnace tube based on 5G communication technology, with the goal of improving the health management level of the key component of ethylene production, that is, the cracking furnace tube, and focusing on the key common technical difficulties of ethylene production of tube outer-surface temperature sensing and tube slagging diagnosis. It also integrated the edge-fog-cloud "mixed computing" technology and deep learning technology in artificial intelligence, which had a higher degree in the research and development of automation and intelligence, and was more versatile in an industrial environment. The platform included a 5G-based tube intelligent temperature-measuring device, a 5G-based intelligent peep door gearing, a 5G-based edge-fog-cloud collaboration mechanism, and a mixed deep learning-related application. The platform enhanced the automation and intelligence of the enterprise, which could not only promote the quality and efficiency of the enterprise but also protect the safe operation of the cracking furnace device and lead the technological progress and transformation and upgrading of the industry through the application.


Asunto(s)
Inteligencia Artificial , Inteligencia , Automatización , Etilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA