RESUMEN
As an analogue to an electrical diode, a radiative thermal diode allows radiation to transfer more efficiently in one direction than in the opposite direction by operating in a contactless mode. In this study, we demonstrated that within the framework of three-body photon thermal tunneling, the rectification performance of a three-body radiative diode can be greatly improved by bringing graphene into the system. The system is composed of three parallel slabs, with the hot and cold terminals of the diode coated with graphene films and the intermediate body made of vanadium dioxide (VO2). The rectification factor of the proposed radiative thermal diode reaches 300% with a 350 nm separation distance between the hot and cold terminals of the diode. With the help of graphene, the rectification performance of the radiative thermal diode can be improved by over 11 times. By analyzing the spectral heat flux and energy transmission coefficients, it was found that the improved performance is primarily attributed to the surface plasmon polaritons (SPPs) of graphene. They excite the modes of insulating VO2 in the forward-biased scenario by forming strongly coupled modes between graphene and VO2 and thus dramatically enhance the heat flux. However, for the reverse-biased scenario, the VO2 is at its metallic state, and thus, graphene SPPs cannot work by three-body photon thermal tunneling. Furthermore, the improvement was also investigated for different chemical potentials of graphene and geometric parameters of the three-body system. Our findings demonstrate the feasibility of using thermal-photon-based logical circuits, creating radiation-based communication technology and implementing thermal management approaches at the nanoscale.
RESUMEN
Photoacoustic imaging techniques with gold nanoparticles as contrast agents have received a great deal of attention. The photoacoustic response of gold nanoparticles strongly depends on the far-field optical properties, which essentially depend on the dielectric constant of the material. The dielectric constant of gold not only varies with wavelength but is also affected by temperature. However, the effect of the temperature dependence of the dielectric constant on gold nanoparticles' photoacoustic response has not been fully investigated. In this work, the Drude-Lorentz model and Mie theory are used to calculate the dielectric constant and absorption efficiency of gold nanospheres in aqueous solution, respectively. Then, the finite element method is used to simulate the heat transfer process of gold nanospheres and surrounding water. Finally, the one-dimensional velocity-stress equation is solved by the finite-difference time-domain method to obtain the photoacoustic response of gold nanospheres. The results show that under the irradiation of a high-fluence nanosecond pulse laser, ignoring the temperature dependence of the dielectric constant will lead to large errors in the photothermal response and the nonlinear photoacoustic signals (it can even exceed 20% and 30%). The relative error of the photothermal and photoacoustic response caused by ignoring the temperature-dependent dielectric constant is determined from both the temperature dependence of absorption efficiency and the maximum temperature increase of gold nanospheres. This work provides a new perspective for the photothermal and photoacoustic effects of gold nanospheres, which is meaningful for the development of high-resolution photoacoustic detectors and nano/microscale temperature measurement techniques.
RESUMEN
Black phosphorus (BP), as a two-dimensional material, has exhibited unique optoelectronic properties due to its anisotropic plasmons. In the present work, we theoretically propose a radiative thermal switch (RTS) composed of BP gratings in the context of near-field radiative heat transfer. The simply mechanical rotation between the gratings enables considerable modulation of radiative heat flux, especially when combined with the use of non-identical parameters, i.e., filling factors and electron densities of BP. Among all the cases including asymmetric BP gratings, symmetric BP gratings, and BP films, we find that the asymmetric BP gratings possess the most excellent switching performance. The optimized switching factors can be as high as 90% with the vacuum separation d=50â nm and higher than 70% even in the far-field regime d=1â µm. The high-performance switching is basically attributed to the rotatable-tunable anisotropic BP plasmons between the asymmetric gratings. Moreover, due to the twisting principle, the RTS can work at a wide range of temperature, which has great advantage over the phase change materials-based RTS. The proposed switching scheme has great significance for the applications in optoelectronic devices and thermal circuits.
RESUMEN
In the present work, the near-field radiative heat transfer of a multilayered graphene system is investigated within the framework of the many-body theory. For the first time, the temperature distribution corresponding to the steady state of the system is investigated. Unique temperature steps are observed near both boundaries of the system, especially in the strong near-field regime. By utilizing the effective radiative thermal conductance, the thermal freedom of heat flux in different regions of the system is analyzed quantitatively, and the cause of various temperature distributions is explained accordingly. To characterize the heat transfer ability of the whole system, we evaluate the system with two heat transfer coefficients (HTC), transient heat transfer coefficient (THTC), and steady heat transfer coefficient (SHTC). A unique many-body enhancement is observed, which causes a red-shift of resonance peak corresponding to graphene surface plasmon polaritons. Furthermore, a three-body enhancement of SHTC emerges thanks to the relay effect and the complexity of the system. The regime of heat transport can be tuned by changing the chemical potentials of graphene and undergoes a transition from diffusive to quasi-ballistic transport in the strong near-field regime.
RESUMEN
Photoacoustic (PA) imaging using the nonlinear PA response of gold nanoparticles (GNPs) can effectively attenuate the interference from background noise caused by biomolecules (e.g., hemoglobin), thus offering a highly potential noninvasive biomedical imaging method. However, the mechanism of the nonlinear PA response of GNPs based on the thermal expansion mechanism, especially the effect of heat-transfer ability, still lacks quantitative investigation. Therefore, this work investigated the effect of heat-transfer ability on the nonlinear PA response of GNPs using the critical energy and fluence concept, taking into account the Au@SiO2 core-shell nanoparticles (weakened heat transfer) and gold nanochains (enhanced heat transfer). The results showed that the stronger the heat transferability, the smaller the critical energy, indicating that the nonlinear PA response of different nanoparticles cannot be contrasted directly through the critical energy. Moreover, the critical fluence can directly contrast the proportion of nonlinear components in the PA response of different GNPs as governed by the combined effect of heat transferability and photothermal conversion ability.