Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 44(21): 5129-5132, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674948

RESUMEN

We propose a compact linear polarization spectrometer based on the in-fiber polarization-dependent diffraction grating. The beam profile of radiated light of the grating is shaped to be a Gaussian profile to improve the performance of the spectrometer, where the size of the focused light spot is reduced from 44 um to 33 um with the shaped radiation mode of the grating. Based on the experimental results, the proposed spectrometer can achieve 0.05 nm resolution and 115 nm wavelength responding range from 1495 nm to 1610 nm. To verify the performance of the proposed fiber spectrometer, we measure the transmission spectra of an excessively tilted fiber grating, which has a pair of orthogonal polarization transmission spectra. Compared with the traditional measuring method, the proposed fiber spectrometer integrates the polarizing and spectral analyzing functions in the measuring system and achieves the polarization-sensitive spectral analysis, which shows good wavelength consistency and perfect polarization characteristics.

2.
Opt Lett ; 44(17): 4407-4410, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465413

RESUMEN

In this Letter, we propose an in-fiber single-polarization diffraction grating based on a radiant tilted fiber grating (TFG), in which the s-polarization light could be diffracted from the fiber core to free space with the wavelength-dependent diffraction angle. For the first time, we have presented the theoretical model of angular dispersion of a radiant TFG by employing the Fourier optics analysis method. The angular dispersion of the radiant TFG has been numerically characterized in terms of tilt angle, period, and wavelength. In the experiment, we have measured the diffraction angles and angular dispersion of the radiant TFGs with tilt angles of 41°, 45°, and 47° UV-inscribed into single-mode fiber, where the experimental results matched well with the simulation results. The simulation and experimental results have indicated that the diffraction light of radiant TFGs has a linear polarization state with over 0.99 degree of polarization at the tilt angle range from 41° to 47°.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA