RESUMEN
Semen Ziziphi Spinosae (SZS) is a traditional Chinese herbal medicine widely used to treat insomnia and anxiety in clinical practice. Currently, the demand for SZS is increasing every year, but the production of wild SZS is unstable due to environmental factors. Grafting sour jujube scions onto sour jujube or jujube tree stocks can achieve a high production rate within a short period of time. However, the effects of grafting on the quality of SZS have not been reported. This study investigated the differences between wild-type and grafted SZS from three aspects: phenotype, chemical composition, and molecular mechanism. The findings revealed that the grafted specimens were generally larger in morphology and lighter in color than the wild-type samples. The dimensions of both the grafted specimens were generally larger than those of the wild specimens. The HPLC-ELSD results revealed that the three main chemical components in the grafted SZS, namely, spinosin, jujuboside A, and jujuboside B, had higher contents than their wild-type counterparts. Comprehensive transcriptome sequencing analysis and KEGG annotation revealed that DEG enrichment between grafted and wild-type SZS occurred mainly during stress resistance and rootstock scion healing. There were 23 DEGs that may encode enzymes involved in the biosynthetic pathway of flavonoids and 21 genes encoding terpenoid saponins. Further investigation revealed that the expression of the genes C4H, CHS, CHI, and F3'5'H in the flavonoid biosynthesis pat.hway and HMGR, MVK, MVD, and FPPS in the saponin biosynthesis pathway accounted for the difference in quality between grafted and wild SZS. Furthermore, WGCNA identified 15 core genes related to medicinal ingredients between grafted and wild SZS. These results provide support for further research on the differences in the quality of medicinal ingredients between grafted and wild SZS.
Asunto(s)
Perfilación de la Expresión Génica , Ziziphus , Ziziphus/genética , Ziziphus/química , Saponinas , Medicamentos Herbarios Chinos/química , Transcriptoma , Regulación de la Expresión Génica de las Plantas , FlavonoidesRESUMEN
Secondary injury is the main cause of high mortality and poor prognosis of TBI, which has recently been suggested to be related to ferroptosis. Polydatin, a monocrystalline compound extracted from the rhizome of Polygonum, has been shown to exert potential neuroprotective effects. However, its role and mechanism in the secondary injury of TBI has not been elucidated. In this study, the inhibition of Polydatin on ferroptosis was observed both in the hemoglobin treated Neuro2A cells in vitro and in TBI mouse model in vivo, characterized by reversion of accumulation or deposition of free Fe2+, increased content of MDA, decreased activity of key REDOX enzyme GPx4, cell death and tissues loss. Although Polydatin corrected the increased mRNA levels of ferroptosis signaling molecules GPX4, SLC7A11, PTGS2, and ATP5G3 after TBI, TBI and Polydatin treatment had no significant effect on their protein expression. Notably, Polydatin could completely reverse the decrease of GPx4 activity after TBI in vivo and in vitro, and the effect was stronger than that of the classical ferroptosis inhibitor FER-1 in vitro. Further, Polydatin has been shown to reduce the severity of acute neurological impairment and significantly improve subacute motor dysfunction in TBI mice. Our findings provided translational insight into neuroprotection with Polydatin in TBI by inhibiting ferroptosis mainly depending on the maintenance of GPx4 activity.
Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/prevención & control , Ferroptosis/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Estilbenos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hemina/farmacología , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismoRESUMEN
In order to explore the effect of the hollow capsule material formulation on the capsule glue and film formation, this study used hydroxypropylmethylcellulose (HPMC), carrageenan, KCl and Tween 80 as raw materials to determine the production of HPMC hollow capsules suitable formula. The optimal process conditions are as follows: the proportions of HPMC, carrageenan, KCl and Tween 80 in the solvent (purified water) are 18% (m:V), 0.7% (m:V), 0.07% (m:V) and 0.018% (V:V), respectively. Under this condition, the viscosity of the resulting solution, glue solidification temperature and gel strength were medium. The resulting film has low hygroscopicity, good solubility, optical properties and mechanical properties. This research can provide data support for the precise formulation and industrial production of HPMC hollow plant capsules.
Asunto(s)
Metilcelulosa , Cápsulas , Carragenina , Derivados de la Hipromelosa , SolubilidadRESUMEN
Accumulation of oxidative stress is highly intertwined with aging process and contributes to aging-related diseases, such as neurodegenerative diseases. Deciphering the molecular machinery that regulates oxidative stress is fundamental to further uncovering the pathogenesis of these diseases. Chaperone-mediated autophagy (CMA), a highly selective lysosome-dependent degradation process, has been proven to be an important maintainer of cellular homeostasis through multiple mechanisms, one of which is the attenuation of oxidative stress. However, the specific mechanisms underlying this antioxidative action of CMA are not fully understood. In this study, we found that CMA directly degrades Kelch-like ECH-associated protein 1 (Keap1), an adaptor of E3 ligase complex that promotes the degradation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master transcriptional regulator in antioxidative response. Activated CMA induced by prolonged oxidative stress led to an increase in Nrf2 level by effectively degrading Keap1, contributing to Nrf2 nuclear translocation and the expression of multiple downstream antioxidative genes. Meanwhile, together with previous study showing that Nrf2 can also transcriptionally regulate LAMP2A, the rate-limiting factor of CMA process, we reveal a feed-forward loop between CMA and Nrf2. Our study identifies CMA as a previously unrecognized regulator of Keap1-Nrf2 pathway and reinforces the antioxidative role of CMA.
Asunto(s)
Autofagia Mediada por Chaperones , Factor 2 Relacionado con NF-E2 , Antioxidantes/farmacología , Autofagia , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés OxidativoRESUMEN
BACKGROUND: Blood-based test for predicting disease progression and early diagnosis of Parkinson's disease (PD) is an unmet need in the clinic. The profiles of microRNAs (miRNAs) are regarded as potential diagnostic biomarkers for human diseases, whereas miRNAs in the periphery are susceptible to the influence of various components. MiRNAs enriched in serum extracellular vesicles (EVs) have demonstrated disease-specific advantages in diagnosis due to their high abundance, stability and resistance to degradation. This study was aimed to screen differentially expressed EV-derived miRNAs between healthy controls and PD patients to aid in diagnosis of PD. METHODS: A total of 31 healthy controls and 72 patients with a diagnosis of PD at different Hoehn and Yahr stages in Tangdu Hospital were included. In total, 185 differentially expressed miRNAs were obtained through RNA sequencing of serum EVs as well as edgeR and t-test analyses. Subsequently, the weighted gene co-expression network analysis (WGCNA) was utilized to identify the commonly expressed miRNAs in all stages of PD by constructing connections between modules, and specifically expressed miRNAs in each stage of PD by functional enrichment analysis. After aligning these miRNAs with PD-related miRNAs in Human miRNA Disease Database, the screened miRNAs were further validated by receiver operating characteristic (ROC) curves and quantitative real-time polymerase chain reaction (qRT-PCR) using peripheral blood EVs from 40 more participants. RESULTS: WGCNA showed that 4 miRNAs were commonly associated with all stages of PD and 13 miRNAs were specifically associated with different stages of PD. Of the 17 obtained miRNAs, 7 were validated by ROC curve analysis and 7 were verified in 40 more participants by qRT-PCR. Six miRNAs were verified by both methods, which included 2 miRNAs that were commonly expressed in all stages of PD and 4 miRNAs that were specifically expressed in different stages of PD. CONCLUSIONS: The 6 serum EV-derived miRNAs, hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-miR-199a-3p, hsa-miR-28-5p, hsa-miR-22-5p and hsa-miR-151a-5p, may potentially be used as biomarkers for PD progression and for early diagnosis of PD in populations.