Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 753: 109905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281543

RESUMEN

Collagen I is a major component of extracellular matrix in human skin, and is also widely used in a variety of skin-care products. In this study, we investigated the modulatory roles of collagen I on human immortalized keratinocytes HaCaT, especially when cells were irradiated with UVB. Interestingly, the cells grown on plates coated by molecular collagen I, but not fibrillar collagen I, acquired certain resistance against UVB damages, as shown by increased survival and reduced apoptosis. The accumulation of dysfunctional mitochondria in UVB-treated cells was attenuated by molecular collagen I-coating. Interestingly, molecular collagen I rescued the loss of mitochondrial biogenesis in cells treated with UVB. Loss of PINK1/parkin-mediated mitophagy was dominant for the accumulation of dysfunctional mitochondria after UVB irradiation. Of note, cells cultured on molecular collagen I-precoated plates exhibited reserved mitophagy after UVB irradiation, as reflected by the enhanced protein level of PINK1/parkin, increased mitochondrial ubiquitin and the co-localization of lysosomes and mitochondria. Moreover, in UVB-treated cells, inhibiting mitophagy by Cyclosporin A, or by silencing PINK1 or parkin, disturbed the resolution of mitochondrial stress and reduced the protective effect of molecular collagen I, indicating that mitophagy is pivotal for the protection of collagen I against UVB damage in keratinocytes HaCaT. Collectively, this study reveals an unexpected protective role of collagen I, which facilitates mitophagy to rescue cells under UVB irradiation, providing a new direction for clinical application of collagen products.


Asunto(s)
Apoptosis , Mitofagia , Humanos , Queratinocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo
2.
Arch Biochem Biophys ; 737: 109553, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842493

RESUMEN

Ultraviolet B (UVB) irradiation causes skin damages. In this study, we focus on the involvement of mitochondrial disorders in UVB injury. Surprisingly, UVB irradiation increases the amounts of mitochondria in human immortalized keratinocytes HaCaT. However, further analysis shows that ATP levels decreased by UVB treatment in accordance with the collapse of mitochondrial membrane potential (MMP), suggesting an accumulation of dysfunctional mitochondria in UVB-irradiated HaCaT cells. Mitophagy, mainly mediated by PINK1 and parkin, is critical for the elimination of damaged mitochondria. Western blot results show that the levels of both PINK1 and parkin are decreased in UVB-irradiated cells, indicating the impairment of mitophagy. Silencing the expression of PINK1 or parkin by transfection of siRNA shows essentially the same damage to the cells as UVB irradiation does, including increased mitochondrial amount, decreased MMP and ATP production, and enhanced apoptosis, evidencing that repression of PINK1/parkin-mediated mitophagy plays a primary cause of UVB-caused cells damages. We previously found that HaCaT cells exposed to UVB showed activation of the cGAS-STING pathway and apoptosis. Here, silencing PINK1 or parkin also increases the protein levels of cGAS and STING, facilitates nuclear accumulation of NF-κB, and promotes the transcription of IFNß, suggesting for the activation of STING pathway. Mitophagy impairment either by UVB-irradiation or by PINK1/parkin silencing initiates caspase-3-mediated apoptosis, as shown by the activation of caspase-3 and cleavage of PARP, as well as the increase of Hoechst-positive stained cells and Annexin V-positive cells. Further studies find that Bax-mediated permeabilization of mitochondrial membrane is critical for cell apoptosis, as well as the cytosolic leakage of mtDNA in UVB-treated cells, which results in cGAS-STING activation, and these processes are negatively-regulated by PINK1/parkin-mediated mitophagy. This study reveals the involvement of dysfunctional mitochondria due to impaired mitophagy in the damaging effect of UVB irradiation on HaCaT cells. Restoring the mitophagy has the potential to be developed as a new strategy to protect skin from UVB damages.


Asunto(s)
ADN Mitocondrial , Mitofagia , Humanos , ADN Mitocondrial/metabolismo , Caspasa 3/metabolismo , Mitocondrias/metabolismo , Queratinocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/genética , Adenosina Trifosfato/metabolismo
3.
Arch Biochem Biophys ; 738: 109558, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878340

RESUMEN

Ultraviolet B (UVB) irradiation causes skin inflammation and apoptosis. Mitochondria are highly dynamic and undergo constant fusion and fission that are essential for maintaining physiological functions of cells. Although dysfunction of mitochondria has been implicated in skin damages, little is known about the roles of mitochondrial dynamics in these processes. UVB irradiation increases abnormal mitochondrial content but decreases mitochondrial volume in immortalized human keratinocyte HaCaT cells. UVB irradiation resulted in marked upregulation of mitochondrial fission protein dynamin-related protein 1 (DRP1) and downregulation of mitochondrial outer membrane fusion proteins 1 and 2 (MFN1 and MFN2) in HaCaT cells. Mitochondrial dynamics was discovered to be crucial for NLRP3 inflammasome and cGAS-STING pathway activation, as well as the induction of apoptosis. Inhibition of mitochondrial fission by treatments with a DRP1 inhibitor, mdivi-1, or with DRP1-targeted siRNA, efficiently prevented UVB-induced NLRP3/cGAS-STING mediated pro-inflammatory pathways or apoptosis in the HaCaT cells, whereas inhibition of mitochondrial fusion with MFN1and 2 siRNA increased these pro-inflammatory pathways or apoptosis. The enhanced mitochondrial fission and reduced fusion caused the up-regulation of reactive oxygen species (ROS). Application of an antioxidant, N-acetyl-l-cysteine (NAC), which scavenges excessive ROS, attenuated inflammatory responses through suppressing NLRP3 inflammasome and cGAS-STING pathway activation, and rescued cells from apoptosis caused by UVB-irradiation. Together, our findings revealed the regulation of NLRP3/cGAS-STING inflammatory pathways and apoptosis by mitochondrial fission/fusion dynamics in UVB-irradiated HaCaT cells, providing a new strategy for the therapy of UVB skin injury.


Asunto(s)
Dinámicas Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Células HaCaT/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Queratinocitos/metabolismo , Apoptosis/efectos de la radiación , Nucleotidiltransferasas/metabolismo , ARN Interferente Pequeño/metabolismo
4.
Sci Rep ; 13(1): 19682, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952052

RESUMEN

This study investigated the impact of subway car interior design on passenger evacuation and boarding/alighting efficiency. The usability of pedestrian agent models was verified through real-life experiments. A seven-factor orthogonal simulation experiment was designed, using key geometric features of the subway car interior as variables. The results of the computer simulation showed that the impact of subway car interior design factors on evacuation and boarding/alighting time was not entirely consistent, with seat layout and door width being the most important factors affecting passenger movement. In the evacuation scenario, only the connectivity of the subway car has no effect on evacuation time, while in the boarding and alighting scenario, seat layout, car type, door width, and foyer width all significantly affect boarding and alighting time. Multivariate regression models were established to predict evacuation and boarding/alighting times through design features, which can explain 86.7% and 58.9% of the time variation, respectively. The research results were used to guide subway car design, and the proposed new scheme demonstrated better performance.

5.
Sci Rep ; 12(1): 5956, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396492

RESUMEN

This study investigated the impact of experience on the visual behavior and driving performance of high-speed train drivers, and explored the correlation between visual behavior and driving performance. Through a simulated driving task, eye movement data and operating data of novice drivers, trainee drivers, and experienced drivers in the traction stage, normal operation process stage, and braking stage were collected. Variance and linear regression were used to analyze the difference and correlation between indicators. The results show that experience could change the driver's information collection method from long fixation to multi-frequency. Experience also increased the consistency of group operations and reduced the likelihood of hazard occurrences. Therefore, driving performance can be improved by reducing the average fixation duration of information through interface optimization.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Accidentes de Tránsito/prevención & control , Movimientos Oculares , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA