Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(9): e1009040, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32970669

RESUMEN

Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss.


Asunto(s)
Aldehído Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Células Ciliadas Auditivas/patología , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/etiología , Proteínas de Homeodominio/genética , Factor de Transcripción Brn-3C/genética , Animales , Benzaldehídos/farmacología , Modelos Animales de Enfermedad , Haploinsuficiencia/genética , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Ruido/efectos adversos , Quinolinas/farmacología , Factor de Transcripción Brn-3C/metabolismo , Tretinoina/farmacología , para-Aminobenzoatos/farmacología
2.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028590

RESUMEN

Intestinal barrier function is required for the maintenance of mucosal homeostasis. Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases. In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain (MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular reorganization of tight junction structure and composition, including occludin endocytosis. In disease states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-α (TNF), interleukin-1ß (IL-1ß), and several related molecules. Of these, TNF has been studied in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has, however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory bowel disease.


Asunto(s)
Permeabilidad de la Membrana Celular , Células Epiteliales/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Humanos , Transducción de Señal
3.
Sheng Li Xue Bao ; 71(1): 86-94, 2019 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-30778507

RESUMEN

Emotional information is critical for our social life, in which attentional bias is now a focus in the study on attention. However, the attentional bias processing mechanism of emotional faces still arouses huge controversy. Using similar experimental paradigms and stimuli, the published studies have yielded contradictory results. Some studies suggest that angry faces could automatically stimulate attention, that is, there is an anger superiority effect. On the contrary, lines of growing evidence support the existence of a happiness superiority effect, suggesting that the superiority effect is shown in happy faces rather than angry faces. In the present paper, the behavioral and neuroscience studies of anger and happiness superiority effects are combined. It is found that there are three major reasons for the debate over the two types of effects, which include the choice of stimulus materials, the difference of paradigm setting, and the different stages of emotional processing. By comparatively integrating the previous published results, we highlight that the future studies should further control the experimental materials and procedures, and investigate the processing mechanism of anger and happiness superiority effects by combining cognitive neurobiology means to resolve the disputes.


Asunto(s)
Ira , Sesgo Atencional , Expresión Facial , Felicidad , Humanos
4.
Cancer Cell Int ; 17: 35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286417

RESUMEN

BACKGROUND: Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. METHODS: Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by ß-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. RESULTS: Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. ß-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. CONCLUSIONS: We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

5.
J Physiol ; 593(3): 681-700, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25433069

RESUMEN

KEY POINTS: Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. ABSTRACT: Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle.


Asunto(s)
Contracción Muscular , Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Vejiga Urinaria/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Músculo Liso/fisiología , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera , Fosforilación , Mutación Puntual , Vejiga Urinaria/citología , Vejiga Urinaria/fisiología
6.
J Biol Chem ; 289(32): 22512-23, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24951589

RESUMEN

Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca(2+)-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.


Asunto(s)
Músculo Liso Vascular/fisiología , Quinasa de Cadena Ligera de Miosina/fisiología , Animales , Presión Sanguínea/fisiología , Femenino , Hipertensión/etiología , Hipertensión/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Arterias Mesentéricas/fisiología , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/deficiencia , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Transducción de Señal , Vasoconstricción/fisiología , Vasodilatación/fisiología
7.
J Biol Chem ; 289(41): 28478-88, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25122766

RESUMEN

Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Yeyuno/metabolismo , Miocitos del Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/genética , Adenoviridae/genética , Secuencias de Aminoácidos , Animales , Membrana Celular/química , Movimiento Celular , Regulación de la Expresión Génica , Vectores Genéticos , Yeyuno/citología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocitos del Músculo Liso/citología , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Cultivo Primario de Células , Unión Proteica , Transducción de Señal , Tensión Superficial , Transfección
8.
Gastroenterology ; 144(7): 1456-65, 1465.e1-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499953

RESUMEN

BACKGROUND & AIMS: The regulatory subunit of myosin light chain phosphatase, MYPT1, has been proposed to control smooth muscle contractility by regulating phosphorylation of the Ca(2+)-dependent myosin regulatory light chain. We generated mice with a smooth muscle-specific deletion of MYPT1 to investigate its physiologic role in intestinal smooth muscle contraction. METHODS: We used the Cre-loxP system to establish Mypt1-floxed mice, with the promoter region and exon 1 of Mypt1 flanked by 2 loxP sites. These mice were crossed with SMA-Cre transgenic mice to generate mice with smooth muscle-specific deletion of MYPT1 (Mypt1(SMKO) mice). The phenotype was assessed by histologic, biochemical, molecular, and physiologic analyses. RESULTS: Young adult Mypt1(SMKO) mice had normal intestinal motility in vivo, with no histologic abnormalities. On stimulation with KCl or acetylcholine, intestinal smooth muscles isolated from Mypt1(SMKO) mice produced robust and increased sustained force due to increased phosphorylation of the myosin regulatory light chain compared with muscle from control mice. Additional analyses of contractile properties showed reduced rates of force development and relaxation, and decreased shortening velocity, compared with muscle from control mice. Permeable smooth muscle fibers from Mypt1(SMKO) mice had increased sensitivity and contraction in response to Ca(2+). CONCLUSIONS: MYPT1 is not essential for smooth muscle function in mice but regulates the Ca(2+) sensitivity of force development and contributes to intestinal phasic contractile phenotype. Altered contractile responses in isolated tissues could be compensated by adaptive physiologic responses in vivo, where gut motility is affected by lower intensities of smooth muscle stimulation for myosin phosphorylation and force development.


Asunto(s)
Señalización del Calcio/fisiología , Motilidad Gastrointestinal/fisiología , Intestinos/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Quinasa de Cadena Ligera de Miosina/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Femenino , Motilidad Gastrointestinal/genética , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/genética , Quinasa de Cadena Ligera de Miosina/deficiencia , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera
9.
Tumour Biol ; 35(1): 815-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23982875

RESUMEN

Metastasis associated in colon cancer 1 (MACC1) has been regarded as a novel potential therapeutic target for multiple cancers. However, the impact of MACC1 in glioma remains unclear. The aim of this study was to analyze the correlation of MACC1 expression with the clinicopathological features of glioma. MACC1 mRNA and protein expression levels in human glioma tissues were detected by quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. MACC1 mRNA and protein expression were both significantly higher in glioma tissues than in corresponding noncancerous brain tissues (both P < 0.001). In addition, statistical analysis suggested that high MACC1 expression was significantly correlated with advanced pathological grade (P = 0.004) and that patients with high expression of MACC1 protein exhibited a poorer prognosis than those with low MACC1 expression. Furthermore, Cox multivariate analysis showed that MACC1 overexpression was an independent prognostic factor for predicting the overall survival of glioma patients. In conclusion, expression of MACC1 in glioma could be adopted as a candidate biomarker for the diagnosis of clinical stage and for assessing prognosis, indicating for the first time that MACC1 may play an important role in the tumor development and progression in glioma. MACC1 might be considered as a novel therapeutic target against this cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Expresión Génica , Glioma/genética , Glioma/patología , Factores de Transcripción/genética , Adulto , Anciano , Neoplasias Encefálicas/mortalidad , Femenino , Glioma/mortalidad , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Reacción en Cadena en Tiempo Real de la Polimerasa , Transactivadores , Factores de Transcripción/metabolismo , Carga Tumoral
10.
Mol Biol Rep ; 41(10): 6827-35, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063577

RESUMEN

Although many scholars have utilized high-throughput microarrays to delineate gene expression patterns after spinal cord injury (SCI), no study has evaluated gene changes in raphe magnus (RM) and somatomotor cortex (SMTC), two areas in brain primarily affected by SCI. In present study, we aimed to analyze the differentially expressed genes (DEGs) of RM and SMTC between SCI model and sham injured control at 4, 24 h, 7, 14, 28 days, and 3 months using microarray dataset GSE2270 downloaded from gene expression omnibus and unpaired significance analysis of microarray method. Protein-protein interaction (PPI) network was constructed for DEGs at crucial time points and significant biological functions were enriched using DAVID. The results indicated that more DEGs were identified at 14 days in RM and at 4 h/3 months in SMTC after SCI. In the PPI network for DEGs at 14 days in RM, interleukin 6, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), FBJ murine osteosarcoma viral oncogene homolog (FOS), tumor necrosis factor, and nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) were the top 5 hub genes; In the PPI network for DEGs at 3 months in SMTC, the top 5 hub genes were ubiquitin B, Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1), FOS, Janus kinase 2 and vascular endothelial growth factor A. Hedgehog and Wnt signaling pathways were the top 2 significant pathways in RM. These hub DEGs and pathways may be underlying therapeutic targets for SCI.

11.
J Gastrointestin Liver Dis ; 33(2): 269-277, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944855

RESUMEN

Colorectal cancer is a prevalent malignancy, with advanced and metastatic forms exhibiting poor treatment outcomes and high relapse rates. To enhance patient outcomes, a comprehensive understanding of the pathophysiological processes and the development of targeted therapies are imperative. The high heterogeneity of colorectal cancer demands precise and personalized treatment strategies. Colorectal cancer organoids, a three-dimensional in vitro model, have emerged as a valuable tool for replicating tumor biology and exhibit promise in scientific research, disease modeling, drug screening, and personalized medicine. In this review, we present an overview of colorectal cancer organoids and explore their applications in research and personalized medicine, while also discussing potential future developments in this field.


Asunto(s)
Neoplasias Colorrectales , Organoides , Medicina de Precisión , Humanos , Organoides/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Animales
12.
Int J Womens Health ; 16: 783-795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737496

RESUMEN

Objective: This cross-sectional study aimed to explore the association of overweight and inflammatory indicators with breast cancer risk in Chinese patients. Methods: Weight, height, and peripheral blood inflammatory indicators, including white blood cell count (WBC), neutrophil count (NE), lymphocyte count (LY), platelet count (PLT) and the concentration of hypersensitivity C-reactive protein (hsCRP), were collected in 383 patients with benign breast lumps (non-cancer) and 358 patients with malignant breast tumors (cancer) at the First Affiliated Hospital of Soochow University, China, from March 2018 to July 2020. Body mass index (BMI), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) were determined according to the ratio equation. The correlations among overweight, inflammatory indicators, and the proportion of non-cancer or cancer cases were analyzed. Results: BMI is associated with an increased breast cancer risk. Compared with non-cancer patients, the average WBC count, NE count, NLR, and level of hsCRP were significantly higher in cancer patients. The level of hsCRP was closely associated with the size of malignant breast tumors. Conclusion: We conclude that overweight and high levels of hsCRP may serve as putative risk factors for malignant breast tumors in Chinese women.

13.
Am J Hum Genet ; 87(5): 701-7, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21055718

RESUMEN

Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and ß-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Mutación , Quinasa de Cadena Ligera de Miosina/genética , Adolescente , Adulto , Animales , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
14.
Front Nutr ; 9: 794169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734374

RESUMEN

Inflammatory bowel disease (IBD) is a chronic relapsing-remitting inflammatory disease of the gastrointestinal tract. Patients are usually diagnosed in adolescence and early adulthood and need lifelong treatment. In recent years, it has been found that diet plays an important role in the pathogenesis of IBD. Diet can change intestinal barrier function, affect the structure and function of intestinal flora, and promote immune disorder, thus promoting inflammation. Many patients believe that diet plays a role in the onset and treatment of the disease and changes their diet spontaneously. This review provides some insights into how nutraceuticals regulate intestinal immune homeostasis and improve intestinal barrier function. We reviewed the research results of dietary fiber, polyphenols, bioactive peptides, and other nutraceuticals in the prevention and treatment of IBD and sought better alternative or supplementary treatment methods for IBD patients.

15.
Commun Biol ; 5(1): 744, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879418

RESUMEN

Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.


Asunto(s)
Disfunción Eréctil , Animales , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Liso/fisiología , Fosfatasa de Miosina de Cadena Ligera/genética , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Factores de Virulencia/metabolismo
16.
Nat Commun ; 13(1): 5192, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057627

RESUMEN

Dynamic regulation of intestinal epithelial cell (IEC) differentiation is crucial for both homeostasis and the response to helminth infection. SIRT6 belongs to the NAD+-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Here, we report that IEC Sirt6 deletion leads to impaired tuft cell development and type 2 immunity in response to helminth infection, thereby resulting in compromised worm expulsion. Conversely, after helminth infection, IEC SIRT6 transgenic mice exhibit enhanced epithelial remodeling process and more efficient worm clearance. Mechanistically, Sirt6 ablation causes elevated Socs3 expression, and subsequently attenuated tyrosine 641 phosphorylation of STAT6 in IECs. Notably, intestinal epithelial overexpression of constitutively activated STAT6 (STAT6vt) in mice is sufficient to induce the expansion of tuft and goblet cell linage. Furthermore, epithelial STAT6vt overexpression remarkedly reverses the defects in intestinal epithelial remodeling caused by Sirt6 ablation. Our results reveal a novel function of SIRT6 in regulating intestinal epithelial remodeling and mucosal type 2 immunity in response to helminth infection.


Asunto(s)
Helmintiasis/inmunología , Mucosa Intestinal , Factor de Transcripción STAT6/metabolismo , Sirtuinas/metabolismo , Animales , Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Helmintiasis/metabolismo , Inmunidad Mucosa , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción STAT6/genética , Sirtuinas/genética
17.
J Biol Chem ; 285(32): 24834-44, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20516067

RESUMEN

Orchestrated regulation of neuronal migration and morphogenesis is critical for neuronal development and establishment of functional circuits, but its regulatory mechanism is incompletely defined. We established and analyzed mice with neural-specific knock-out of Trio, a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Knock-out mice showed defective cerebella and severe signs of ataxia. Mutant cerebella had no granule cells in the internal granule cell layer due to aberrant granule cell migration as well as abnormal neurite growth. Trio-deficient granule cells showed reduced extension of neurites and highly branched and misguided processes with perturbed stabilization of actin and microtubules. Trio deletion caused down-regulation of the activation of Rac1, RhoA, and Cdc42, and mutant granule cells appeared to be unresponsive to neurite growth-promoting molecules such as Netrin-1 and Semaphorin 6A. These results suggest that Trio may be a key signal module for the orchestrated regulation of neuronal migration and morphogenesis during cerebellar development. Trio may serve as a signal integrator decoding extrinsic signals to Rho GTPases for cytoskeleton organization.


Asunto(s)
Cerebelo/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/química , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Movimiento Celular , Cromosomas Artificiales Bacterianos/metabolismo , Citoesqueleto/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
18.
J Biol Chem ; 285(8): 5522-31, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20018858

RESUMEN

Different interacting signaling modules involving Ca(2+)/calmodulin-dependent myosin light chain kinase, Ca(2+)-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K(+)-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.


Asunto(s)
Bronquios/enzimología , Contracción Muscular/fisiología , Tono Muscular/fisiología , Músculo Liso/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Tráquea/enzimología , Acetilcolina/metabolismo , Resistencia de las Vías Respiratorias/efectos de los fármacos , Resistencia de las Vías Respiratorias/fisiología , Animales , Antineoplásicos Hormonales/farmacología , Asma/enzimología , Asma/genética , Calcio/metabolismo , Calmodulina/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Potasio/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tamoxifeno/farmacología
19.
Am J Physiol Heart Circ Physiol ; 301(2): H584-91, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21572007

RESUMEN

Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) but Ca(2+)-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCK(SMKO)) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCK(SMKO) mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCK(SMKO) mice may be a useful model of vascular failure and hypotension.


Asunto(s)
Presión Sanguínea , Hipertensión/enzimología , Músculo Liso Vascular/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Cloruro de Sodio Dietético , Vasoconstricción , Animales , Presión Sanguínea/efectos de los fármacos , Desoxicorticosterona , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Genotipo , Hipertensión/etiología , Hipertensión/fisiopatología , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/deficiencia , Quinasa de Cadena Ligera de Miosina/genética , Nefrectomía , Fenotipo , Fosforilación , Cloruro de Potasio/farmacología , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
20.
J Vis Exp ; (155)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32065148

RESUMEN

The intestinal epithelium acts as a barrier that prevents luminal contents, such as pathogenic microbiota and toxins, from entering the rest of the body. Epithelial barrier function requires the integrity of intestinal epithelial cells. While epithelial cell proliferation maintains a continuous layer of cells that forms a barrier, epithelial damage leads to barrier dysfunction. As a result, luminal contents can across the intestinal barrier via an unrestricted pathway. Dysfunction of intestinal barrier has been associated with many intestinal diseases, such as inflammatory bowel disease. Isolated mouse intestinal crypts can be cultured and maintained as crypt-villus-like structures, which are termed intestinal organoids or "enteroids". Enteroids are ideal to study the proliferation and cell death of intestinal epithelial cells in vitro. In this protocol, we describe a simple method to quantify the number of proliferative and dead cells in cultured enteroids. 5-ethynyl-2'-deoxyuridine (EdU) and propidium iodide are used to label proliferating and dead cells in enteroids, and the proportion of proliferating and dead cells are then analyzed by flow cytometry. This is a useful tool to test the effects of drug treatment on intestinal epithelial cell proliferation and cell survival.


Asunto(s)
Mucosa Intestinal/metabolismo , Animales , Proliferación Celular , Citometría de Flujo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA