Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1054571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968360

RESUMEN

Heterosis has been widely used in rice breeding, especially in improving rice yield. But it has rarely been studied in rice abiotic stress, including the drought tolerance, which is becoming one of the most important threaten in decreasing rice yield. Therefore, it is essential to studying the mechanism underlying heterosis in improving drought tolerance of rice breeding. In this study, Dexiang074B (074B) and Dexiang074A (074A) served as maintainer lines and sterile lines. Mianhui146 (R146), Chenghui727 (R727), LuhuiH103 (RH103), Dehui8258 (R8258), Huazhen (HZ), Dehui938 (R938), Dehui4923 (R4923), and R1391 served as restorer lines. The progeny were Dexiangyou (D146), Deyou4727 (D4727), Dexiang 4103 (D4103), Deyou8258 (D8258), Deyou Huazhen (DH), Deyou 4938 (D4938), Deyou 4923 (D4923), and Deyou 1391 (D1391). The restorer line and hybrid offspring were subjected to drought stress at the flowering stage. The results showed that Fv/Fm values were abnormal and oxidoreductase activity and MDA content were increased. However, the performance of hybrid progeny was significantly better than their respective restorer lines. Although the yield of hybrid progeny and restorer lines decreased simultaneously, the yield in hybrid offspring is significantly lower than the respective restorer line. Total soluble sugar content was consistent with the yield result, so we found that 074A can enhance drought tolerance in hybrid rice.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35911143

RESUMEN

Background: Curcumin shows great effects of inhibiting tumor cell proliferation, inducing apoptosis, inhibiting tumor metastasis, and inhibiting angiogenesis on a variety of tumors. However, the biological activity and possible mechanisms of curcumin in the treatment of retinoblastoma have not been fully elucidated. This study explored the potential therapeutic targets and pharmacological mechanisms of curcumin against retinoblastoma based on network pharmacology and molecular docking. Methods: The genes corresponding to curcumin targets were screened from the HERB, PharmMapper, and SwissTargetPrediction databases. Protein-protein interaction (PPI) networks were constructed for the intersecting targets in the STRING database. Cytoscape 3.7.0 was used for network topology analysis and screening of important targets. R 4.1.0 software was used for Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of intersection targets. The molecular structures of curcumin and core target proteins were obtained from PubChem and PDB databases, and the two were preprocessed and molecularly docked using AutoDockTools and PyMOL software. Results: Through network data mining, we obtained 504 curcumin targets and 966 retinoblastoma disease targets, and 44 potential targets for curcumin treatment of retinoblastoma were obtained by mapping. Three core targets were obtained from network topology analysis. 462 biological processes, 21 cellular compositions, and 34 molecular functions were obtained by GO enrichment analysis. KEGG pathway analysis revealed 94 signaling pathways, mainly involving chemical carcinogenesis-receptor activation, chemical carcinogenesis-reactive oxygen species, viral carcinogenesis, Th17 cell differentiation, etc. The molecular docking results indicated that the binding energy of curcumin to the core targets was less than 0 kJ mol-1, among which the binding energy of RB1 and CDKN2A to curcumin was less than -5 kJ mol-1 with significant binding activity. Conclusion: Based on molecular docking technology and network pharmacology, we initially revealed that curcumin exerts its therapeutic effects on retinoblastoma with multitarget, multipathway, and multibiological functions, providing a theoretical basis for subsequent studies.

3.
J Med Food ; 25(6): 618-629, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35708635

RESUMEN

Walnut kernel is a traditional Chinese herb recorded in the Chinese Pharmacopoeia with the efficacies of invigorating kidney, tonifying lung, and relaxing bowel. However, the potential mechanisms were unclear. This article aims to uncover the interdict mechanisms of walnut meal extracts (WMP) on high-fat diet (HFD) induced metabolic disorders in rats and reveal how the WMP benefits are associated with changes in the intestinal flora. Sprague-Dawley (SD) rats were fed a standard chow diet or an HFD for 18 weeks. After 6 weeks, the HFD rats were supplemented with 750 mg WMP/kg body weight or the vehicle for 12 weeks. The structure of gut microbiota was assessed by analyzing 16S rDNA sequences. WMP suppressed the weight gain and visceral obesity. WMP treatment also improved lipid profiles and increased antioxidative activities. WMP fully reversed hepatic steatosis with the upregulation of adipocytokines involved in lipid catabolism (e.g., adiponectin, PPAR-γ, visfatin, CEBPα) and the increased activities of lipoprotein lipase and hormone-sensitive lipase, which were associated with glucose tolerance improvement and insulin resistance (IR) mitigation. As revealed by 16S rDNA sequencing, WMP restored the diversity of intestinal flora reduced by HFD. WMP dramatically reduced the abundance of Gram-negative bacteria, especially Fusobacterium varium and Bacteroides vulgatus, and sharply increased the abundance of Lactobacillus animalis decreased by HFD. Our findings demonstrated that WMP suppressed the weight gain and adiposity in HFD-fed rats and fully reversed HFD induced IR and hepatic steatosis while dramatically reducing the abundance of Fusobacteriaceae and Enterobacteriaceae, underscoring the gut-liver axis as a primary target of walnut polyphenols.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Resistencia a la Insulina , Juglans , Animales , ADN Ribosómico , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ratas , Ratas Sprague-Dawley , Aumento de Peso
4.
Nanomaterials (Basel) ; 9(2)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769773

RESUMEN

The toxicity, especially the transgenerational toxicity of quantum dots (QDs) in vivo, is still scarcely understood in spite of great promising applications of QDs in biomedicine. In this study, the maternal status, pregnancy outcome, and fetus development of parental generation (P0) to offspring in three generations (F3) were investigated after Kunming mice perinatal (GD 13-PND 5) exposure to Cd containing QDs (CdSe/ZnS QDs) and CdCl2. The results show CdSe/ZnS QDs induced placenta injuries in P0 and diminished placenta diameters in F1 and F2. Bodyweight growth decreased in the CdSe/ZnS QDs treatment group in the F1 and F2 generation. Additionally, CdSe/ZnS QDs significantly altered the expression of key genes in the Shh signal pathway. Overall, this study exhibited that the CdSe/ZnS QDs exposure during perinatal period impaired placenta growth in the first two generations, but not on the third generation. The toxicological actions of the CdSe/ZnS QDs might be through the effects on the Shh signal pathway.

5.
Zhongguo Zhong Yao Za Zhi ; 27(10): 754-6, 2002 Oct.
Artículo en Zh | MEDLINE | ID: mdl-12776554

RESUMEN

OBJECTIVE: To study the chemical constituents in the leaf of Ligustrum delavayanum Hariot. METHOD: The constituents were isolated with column chromatographies and the structures were identified by MS, IR, UV and NMR. RESULT: Four compounds were isolated and identified as beta-sitosterol, oleanic acid, 2 alpha-hydroxyursolic acid, and acteoside. CONCLUSION: All the compounds were isolated from the plant for the first time.


Asunto(s)
Glucósidos/aislamiento & purificación , Ligustrum/química , Ácido Oleanólico/aislamiento & purificación , Fenoles/aislamiento & purificación , Plantas Medicinales/química , Glucósidos/química , Ácido Oleanólico/química , Fenoles/química , Hojas de la Planta/química , Sitoesteroles/química , Sitoesteroles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA