Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; : e2403674, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072991

RESUMEN

Semi-solid lithium-ion batteries (SSLIBs) based on "slurry-like" electrodes hold great promise to enable low-cost and sustainable energy storage. However, the development of the SSLIBs has long been hindered by the lack of high-performance anodes. Here the origin of low initial Coulombic efficiency (iCE, typically <60%) is elucidated in the graphite-based semi-solid anodes (in the non-flowing mode) and develop rational strategies to minimize the irreversible capacity loss. It is discovered that Ketjen black (KB), a nanoscale conductive additive widely used in SSLIB research, induces severe electrolyte decomposition during battery charge due to its large surface area and abundant surface defects. High iCEs up to 92% are achieved for the semi-solid graphite anodes by replacing KB with other low surface-area, low-defect conductive additives. A semi-solid full battery (LiFePO4 vs graphite, in the non-flowing mode) is further demonstrated with stable cycle performance over 100 cycles at a large areal capacity of 6 mAh cm-2 and a pouch-type semi-solid full cell that remains functional even when it is mechanically abused. This work demystifies the SSLIBs and provides useful physical insights to further improve their performance and durability.

2.
Small ; 19(49): e2304187, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37603387

RESUMEN

Layered manganese-based oxides (LMOs) are promising cathode materials for sodium-ion batteries (SIBs) due to their versatile structures. However, the Jahn-Teller effect of Mn3+ induces severe distortion of MnO6 octahedra, and the resultant low symmetry is responsible for the gliding of MnO2 layers and then inferior multiple-phase transitions upon Na+ extraction/insertion. Here, hexagonal P2-Na0.643 Li0.078 Mn0.827 Ti0.095 O2 is synthesized through the incorporation of Li and Ti into the distorted orthorhombic P'2-Na0.67 MnO2 to function as a phase-transition-free oxide cathode. It is revealed that Li in both the transition-metal and Na layers enhances the covalency of Mn-O bonds and allows degeneracy of Mn 3d eg orbitals to favor the formation of hexagonal phase, and the high strength of Ti-O bonds reduces the electrostatic interaction between Na and O for suppressed Na+ /vacancy rearrangements. These collectively lead to a whole-voltage-range solid-solution reaction between 1.8 and 4.3 V with a small volume variation of 1.49%. This rewards its excellent cycling stability (capacity retention of 90% after 500 cycles) and rate capability (89 mAh g-1 at 2000 mA g-1 ).

3.
Small ; 19(17): e2206987, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36725320

RESUMEN

Na4 MnV(PO4 )3 /C (NMVP) has been considered an attractive cathode for sodium-ion batteries with higher working voltage and lower cost than Na3 V2 (PO4 )3 /C. However, the poor intrinsic electronic conductivity and Jahn-Teller distortion caused by Mn3+ inhibit its practical application. In this work, the remarkable effects of Zr-substitution on prompting electronic and Na-ion conductivity and also structural stabilization are reported. The optimized Na3.9 Mn0.95 Zr0.05 V(PO4 )3 /C sample shows ultrafast charge-discharge capability with discharge capacities of 108.8, 103.1, 99.1, and 88.0 mAh g-1 at 0.2, 1, 20, and 50 C, respectively, which is the best result for cation substituted NMVP samples reported so far. This sample also shows excellent cycling stability with a capacity retention of 81.2% at 1 C after 500 cycles. XRD analyses confirm the introduction of Zr into the lattice structure which expands the lattice volume and facilitates the Na+ diffusion. First-principle calculation indicates that Zr modification reduces the band gap energy and leads to increased electronic conductivity. In situ XRD analyses confirm the same structure evolution mechanism of the Zr-modified sample as pristine NMVP, however the strong ZrO bond obviously stabilizes the structure framework that ensures long-term cycling stability.

4.
Kidney Int ; 102(5): 1057-1072, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870640

RESUMEN

Kidney ischemia reperfusion injury (IRI) is a common and inevitable pathological condition in routine urological practices, especially during transplantation. Severe kidney IRI may even induce systemic damage to peripheral organs, and lead to multisystem organ failure. However, no standard clinical treatment option is currently available. It has been reported that kidney IRI is predominantly associated with abnormally increased endogenous reactive oxygen species (ROS). Scavenging excessive ROS may reduce the damage caused by oxidative stress and subsequently alleviate kidney IRI. Here, we reported a simple and efficient one-step synthesis of gold-platinum nanoparticles (AuPt NPs) with a gold core having a loose and branched outer platinum shell with superior ROS scavenging capacity to possibly treat kidney IRI. These AuPt NPs exhibited multiple enzyme-like anti-oxidative properties simultaneously possessing catalase- and peroxidase-like activity. These particles showed excellent cell protective capability, and alleviated kidney IRI both in vitro and in vivo without obvious toxicity, by suppressing cell apoptosis, inflammatory cytokine release, and inflammasome formation. Meanwhile, AuPt NPs also had an effect on inhibiting the transition to chronic kidney disease by reducing kidney fibrosis in the long term. Thus, AuPt NPs might be a good therapeutic agent for kidney IRI management and may be helpful for the development of clinical treatments for kidney IRI.


Asunto(s)
Enfermedades Renales , Nanopartículas del Metal , Daño por Reperfusión , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno , Catalasa , Platino (Metal)/uso terapéutico , Oro/uso terapéutico , Inflamasomas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Riñón/patología , Estrés Oxidativo , Enfermedades Renales/patología , Fibrosis , Citocinas
5.
J Plant Res ; 134(5): 1037-1046, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34268610

RESUMEN

Understanding the effect of soil salinity on the diversity and species distribution of plant communities in inland salt marsh ecosystems could provide solutions for the management of regional saline soils and the protection of salt marsh wetland vegetation. A field experiment in succulent halophyte, Carex, and gramineous grass habitats in Ordos, Inner Mongolia (northwest China) was conducted to study the diversity and composition of plants in different saline habitats in inland salt marsh ecosystems. Results showed that plant diversity and species richness in the Carex habitat were significantly higher than the succulent halophyte habitat and the gramineous grass habitat (P < 0.05). Further, species abundance was higher in the succulent halophyte habitat and the Carex habitat than the gramineous grass habitat. Similar results were obtained when considering the abundance of constructive species. No significant differences in the abundance of dominant species and companion species between the gramineous grass habitat and the Carex habitat were found. We concluded that species abundance, species richness, species distribution, and plant diversity together explained the response of plant communities in different habitats to soil salinity, especially Na+ and SO42-. This highlights the importance of soil salinity for the maintenance of plant diversity and structural composition in inland salt marsh ecosystems.


Asunto(s)
Ecosistema , Humedales , Salinidad , Plantas Tolerantes a la Sal , Suelo
6.
Small ; 14(21): e1704523, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29667305

RESUMEN

O3-type NaNi1/3 Fe1/3 Mn1/3 O2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na+ diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na1-x Cax/2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na1-x Cax/2 NFM samples show single α-NaFeO2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na0.9 Ca0.05 Ni1/3 Fe1/3 Mn1/3 O2 (Na0.9 Ca0.05 NFM) cathode delivers a capacity of 116.3 mAh g-1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na0.9 Ca0.05 NFM cathode during cycling. Compared to NaNMF, the Na0.9 Ca0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na0.9 Ca0.05 NFM makes it a promising material for practical applications in sodium-ion batteries.

7.
Tissue Eng Part B Rev ; 29(4): 414-428, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36785967

RESUMEN

Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/terapia , Ingeniería de Tejidos , Transducción de Señal , Ondas Ultrasónicas , Factores de Crecimiento Nervioso
8.
Nutrients ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764869

RESUMEN

BACKGROUND: Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. METHODS: In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. RESULTS: Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. CONCLUSIONS: Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Renales , Lactobacillales , Neoplasias Testiculares , Neoplasias Urológicas , Masculino , Humanos , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Neoplasias Urológicas/genética , Clostridiaceae , Bacteroidetes , Estudio de Asociación del Genoma Completo
9.
Mater Today Bio ; 20: 100659, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37229212

RESUMEN

Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 â€‹± â€‹12 â€‹µm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.

10.
Chem Sci ; 14(43): 12152-12159, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969581

RESUMEN

We report a chiral phosphoric acid catalyzed apparent hydrolytic ring-opening reaction of racemic aziridines in a regiodivergent parallel kinetic resolution manner. Harnessing the acyloxy-assisted strategy, the highly stereocontrolled nucleophilic ring-opening of aziridines with water is achieved. Different kinds of aziridines are applicable in the process, giving a variety of enantioenriched aromatic or aliphatic amino alcohols with up to 99% yields and up to >99.5 : 0.5 enantiomeric ratio. Preliminary mechanistic study as well as product elaborations were inducted as well.

11.
Mol Biomed ; 4(1): 19, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37353649

RESUMEN

Continuous monitoring for immunosuppressive status, infection and complications are a must for kidney transplantation (KTx) recipients. Traditional monitoring including blood sampling and kidney biopsy, which caused tremendous medical cost and trauma. Therefore, a cheaper and less invasive approach was urgently needed. We thought that a breath test has the potential to become a feasible tool for KTx monitoring. A prospective-specimen collection, retrospective-blinded assessment strategy was used in this study. Exhaled breath samples from 175 KTx recipients were collected in West China Hospital and tested by online ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOF-MS). The classification models based on breath test performed well in classifying normal and abnormal values of creatinine, estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN) and tacrolimus, with AUC values of 0.889, 0.850, 0.849 and 0.889, respectively. Regression analysis also demonstrated the predictive ability of breath test for clinical creatinine, eGFR, BUN, tacrolimus level, as the predicted values obtained from the regression model correlated well with the clinical true values (p < 0.05). The findings of this investigation implied that a breath test by using UVP-TOF-MS for KTx recipient monitoring is possible and accurate, which might be useful for future clinical screenings.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37890042

RESUMEN

The LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material has been of significant consideration owing to its high energy density for Li-ion batteries. However, the poor cycling stability in a carbonate electrolyte limits its further development. In this work, we report the excellent electrochemical performance of the NMC811 cathode using a rational electrolyte based on organic ionic plastic crystal N-ethyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide C2mpyr[FSI], with the addition of (1:1 mol) LiFSI salt. This plastic crystal electrolyte (PC) is a thick viscous liquid with an ionic conductivity of 2.3 × 10-3 S cm-1 and a high Li+ transference number of 0.4 at ambient temperature. The NMC811@PC cathode delivers a discharge capacity of 188 mA h g-1 at a rate of 0.2 C with a capacity retention of 94.5% after 200 cycles, much higher than that of using a carbonate electrolyte (54.3%). Moreover, the NMC811@PC cathode also exhibits a superior high-rate capability with a discharge capacity of 111.0 mA h g-1 at the 10 C rate. The significantly improved cycle performance of the NMC811@PC cathode can be attributed to the high Li+ conductivity of the PC electrolyte, the stable Li+ conductive CEI film, and the maintaining of particle integrity during long-term cycling. The admirable electrochemical performance of the NMC811|C2mpyr[FSI]:[LiFSI] system exhibits a promising application of the plastic crystal electrolyte for high voltage layered oxide cathode materials in advanced lithium-ion batteries.

13.
Chem Commun (Camb) ; 59(2): 211-214, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36477702

RESUMEN

A micro-cubic Prussian blue (PB) with less coordinated water is first developed by electron exchange between graphene oxide and PB. The obtained reduced graphene oxide-PB composite exhibited increased redox reactions of the Fe sites and delivered ultrahigh specific capacity of 163.3 mA h g-1 (30 mA g-1) as well as excellent cycle stability as a cathode in sodium-ion batteries.

14.
Chem Commun (Camb) ; 58(98): 13661, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36448610

RESUMEN

Retraction of 'Prussian blue without coordinated water as a superior cathode for sodium-ion batteries' by Dezhi Yang et al., Chem. Commun., 2015, 51, 8181-8184, https://doi.org/10.1039/C5CC01180A.

15.
ACS Appl Mater Interfaces ; 14(49): 54431-54438, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36445947

RESUMEN

Porous scaffolds have widely been exploited in cartilage tissue regeneration. However, it is often difficult to understand how the delicate hierarchical structure of the scaffold material affects the regeneration process. Graphene materials are versatile building blocks for robust and biocompatible porous structures, enabling investigation of structural cues on tissue regeneration otherwise challenging to ascertain. Here, we utilize a graphene hydrogel with stable and tunable structure as a model scaffold to examine the effect of porous structure on matrix remodeling associated with ingrowth of chondrocytes on scaffolds. We observe much-accelerated yet balanced cartilage remodeling correlating the ingrowth of chondrocytes into the graphene scaffold with an open pore structure on the surface. Importantly, such an enhanced remodeling selectively promotes the expression of collagen type II fibrils over proteoglycan aggrecan, hence clearly illustrating that chondrocytes maintain a stable phenotype when they migrate into the scaffold while offering new insights into scaffold design for cartilage repair.


Asunto(s)
Cartílago Articular , Grafito , Hidrogeles/química , Porosidad , Grafito/farmacología , Grafito/metabolismo , Andamios del Tejido/química , Cartílago , Condrocitos/metabolismo , Ingeniería de Tejidos
16.
Urolithiasis ; 50(4): 389-399, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35460343

RESUMEN

The dietary patterns are closely associated with gut microbiota, which has been proved associated with kidney stones. To assess the association among the dietary patterns, gut microbiota, and kidney stones, patients with calcium oxalate stones and participants without kidney stones were recruited in West China Hospital and were divided into the low nephrolithiasis risk (LNR) and high nephrolithiasis risk (HNR) dietary pattern group based on the results of food frequency questionnaires. The genomic DNA of the fecal samples were extracted for 16S ribosomal RNA gene sequencing. The non-kidney stone (NS) group comprised 39 LNR and 45 HNR individuals, while the kidney stone (KS) group consisted of 19 LNR and 50 HNR individuals. The distribution of oxalate in urine (p < 0.01) but not calcium (p = 0.741) was significantly varied among the four groups. Significant difference was found in the dietary patterns of people with KS and NS controls (X2 = 5.744, p = 0.017). Forty-six discriminative bacteria were found among different dietary patterns groups in KS patients and NS controls. Not only gut bacteria such as Pseudomonas, Sphingomonas, Hydrogenoanaerobacterium, Faecalitalea, etc., but also metabolic pathways associated with inflammation, lipid, and mineral metabolism were found more abundant in KS patients with HNR dietary pattern. It is noteworthy that g__Prevotellaceae_UCG_001, g__hgcI_clade, and g__Bradyrhizobium were negatively related to water intake but instead had a positive correlation with salt and meat intake. Our study revealed that gut microbiota with significantly different abundance existed in the HNR dietary patterns compared to the LNR counterparts in both calcium oxalate KS and NS individuals. The dietary patterns may affect the prevention and management of calcium oxalate stones by regulating the homeostasis of gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Cálculos Renales , Bacterias , Oxalato de Calcio/metabolismo , Calcio de la Dieta , Microbioma Gastrointestinal/fisiología , Humanos , Cálculos Renales/prevención & control , Oxalatos/metabolismo
17.
Adv Healthc Mater ; 11(20): e2201471, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899802

RESUMEN

Eardrum perforation and associated hearing loss is a global health problem. Grafting perforated eardrum with autologous tissues in clinic can restore low-frequency hearing but often leaves poor recovery of high-frequency hearing. In this study, the potential of incorporating a thin multilayered graphene membrane (MGM) into the eardrum for broadband hearing recovery in rats is examined. The MGM shows good biocompatibility and biostability to promote the growth of eardrum cells in a regulated manner with little sign of tissue rejection and inflammatory response. After three weeks of implantation, the MGM is found to be encapsulated by a thin layer of newly grown tissue on both sides without a significant folded overgrowth that is often seen in natural healing. The perforation is well sealed, and broadband hearing recovery (1-32 kHz) is enabled and maintained for at least 2 months. Mechanical simulations show that the high elastic modulus of MGM and thin thickness of the reconstructed eardrum play a critical role in the recovery of high-frequency hearing. This work demonstrates the promise of the use of MGM as a functional graft for perforated eardrum to recover hearing in the broadband frequency region and suggests a new acoustics-related medical application for graphene-related 2D materials.


Asunto(s)
Grafito , Perforación de la Membrana Timpánica , Animales , Ratas , Membrana Timpánica/fisiología , Audición/fisiología , Acústica
18.
Colloids Surf B Biointerfaces ; 208: 112090, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34507071

RESUMEN

In this study, graphene coating was introduced to the modified titanium surface to prevent bacterial infection in oral implants. We modified the titanium surface through SLA and silanization treatment and then coated the surface with graphene. The structure and surface properties were characterized by XPS and SEM. Graphene-coated titanium sheet was incubated with bacteria to test the antibacterial property, which was enhanced by adsorption and release of levofloxacin. We further implanted the graphene-coated titanium sheet loaded with levofloxacin into rabbits to test the antibacterial properties in vivo. The graphene coating exhibited inherent antibacterial properties through membrane stress and the generation of reactive oxygen species (ROS). When loaded with levofloxacin, the graphene coating exhibited a synergistic antibacterial effect and effectively prevented bacterial infections following the implantation. The graphene coating is promising to improve the antibacterial functions of oral implant surfaces to prevent bacterial infection.


Asunto(s)
Grafito , Titanio , Animales , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Levofloxacino/farmacología , Conejos , Staphylococcus aureus , Propiedades de Superficie , Titanio/farmacología
19.
Dalton Trans ; 50(13): 4555-4566, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33729235

RESUMEN

The advancement of novel synthetic approaches for micro/nanostructural manipulation of transition metal phosphide (TMP) materials with precisely controlled engineering is crucial to realize their practical use in batteries. Here, we develop a novel spray-drying strategy to construct three-dimensional (3D) N,P co-doped graphene (G-NP) microspheres embedded with core-shell CoP@C and MoP@C nanoparticles (CoP@C⊂G-NP, MoP@⊂G-NP). This intentional design shows a close correlation between the microstructural G-NP and chemistry of the core-shell CoP@C/MoP@C nanoparticle system that contributes towards their anode performance in lithium-ion batteries (LIBs). The obtained structure features a conformal porous G-NP framework prepared via the co-doping of heteroatoms (N,P) that features a 3D conductive highway that allows rapid ion and electron passage and maintains the overall structural integrity of the material. The interior carbon shell can efficiently restrain volume evolution and prevent CoP/MoP nanoparticle aggregation, providing excellent mechanical stability. As a result, the CoP@C⊂G-NP and MoP@⊂G-NP composites deliver high specific capacities of 823.6 and 602.9 mA h g-1 at a current density of 0.1 A g-1 and exhibit excellent cycling stabilities of 438 and 301 mA h g-1 after 500 and 800 cycles at 1 A g-1. The present work details a novel approach to fabricate core-shell TMPs@C⊂G-NP-based electrode materials for use in next-generation LIBs and can be expanded to other potential energy storage applications.

20.
ACS Appl Mater Interfaces ; 13(15): 17726-17735, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33821614

RESUMEN

Constructing a rational electrode structure for supercapacitors is critical to accelerate the electrochemical kinetics process and thus promote the capacitance. Focusing on the flexible supercapacitor electrode, we synthesized a three-dimensional (3D) porous polypyrrole (PPy) film using a modified vapor phase polymerization method with the use of a porous template (CaCO3). The porous design provided the PPy film with an improved surface area and pore volume. The porous PPy film electrode was studied as a binder-free electrode for supercapacitors. It was found that the abundant interpenetrated pores created by the CaCO3 templates within the 3D framework are beneficial to overcoming the diffusion-controlled limit in the overall electrochemical process. It was revealed by electrochemical investigation that a more pseudocapacitive contribution than diffusion-controlled process contribution was observed in the total charge in the redox reaction. The galvanostatic charge/discharge (GCD) measurements showed that the optimized 3D porous PPy film electrode delivered a high capacitance of 313.6 F g-1 and an areal capacitance of 98.0 mF cm-2 at 1.0 A g-1 in a three-electrode configuration, which is nearly three times that of the dense counterpart electrode synthesized in the absence of the CaCO3 template. A specific capacitance of 62.5 F g-1 at 0.5 A g-1 and 31.1 F g-1 at 10 A g-1 was obtained in a symmetric capacitor device. In addition, the porous structure provided the PPy film with the attractive capability of accommodating the volume change during the doping/dedoping process. This is essential for the PPy film to maintain a long cycling life in a practical operation for a supercapacitor. It turned out that a high capacitance retention up to 81.3% after 10,000 GCD cycles was obtained for the symmetric supercapacitor device with the 3D porous PPy electrode (57.1% capacitive retention was observed for the dense PPy electrode). The strategy and the insight analysis are expected to provide valuable guidance for the design and the synthesis of flexible and wearable film electrodes with high performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA