Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103988

RESUMEN

Whole-exome sequencing (WES) is frequently utilized in diagnosing reproductive genetic disorders to identify various genetic variants. Canonical ±1,2 splice sites are typically considered highly pathogenic, while variants at the 5' or 3' ends of exon boundaries are often considered synonymous or missense variants, with their potential impact on abnormal gene splicing frequently overlooked. In this study, we identified five variants located at the last two bases of the exons and two canonical splicing variants in five distinct families affected by reproductive genetic disorders through WES. Minigene analysis, RT-PCR and Quantitative Real-time PCR (RT-qPCR) confirmed that all seven variants induced aberrant splicing, with six variants altering gene transcriptional expression levels. These findings underscore the crucial role of splice variants, particularly non-canonical splice sites variants, in reproductive genetic disorders, with all identified variants classified as pathogenic.

2.
Yi Chuan ; 46(9): 677-689, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275868

RESUMEN

The sex determination in mammals refers to the development of an initial bipotential organ, termed the bipotential gonad/genital ridge, into either a testis or an ovary at the early stages of embryonic development, under the precise regulation of transcription factors. SOX9 (SRY-box transcription factor 9) is a multifunctional transcription factor in mammalian development and plays a critical role in sex determination and subsequent male reproductive organs development. Recent studies have shown that several enhancers upstream of SOX9 also play an important role in the process of sex determination. In this review, we summarize the progress on the role of SOX9 and its gonadal enhancers in sex determination. This review will facilitate to understand the regulatory mechanism of sex determination of SOX9 and provides a theoretical basis for the further development of animal sex manipulation technologies.


Asunto(s)
Mamíferos , Factor de Transcripción SOX9 , Procesos de Determinación del Sexo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Procesos de Determinación del Sexo/genética , Humanos , Mamíferos/genética , Masculino , Femenino , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica
3.
Reproduction ; 166(4): 247-261, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561570

RESUMEN

In brief: The regulatory role of BMP15 on porcine ovarian follicular development still remains unclear. This study reveals that biallelic editing of BMP15 impairs SMAD signaling and inhibits granulosa cell proliferation, resulting in porcine follicular development arrest and ovarian hypoplasia. Abstract: Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta (TGF-ß) superfamily, which is critical for facilitating ovarian folliculogenesis in mono-ovulatory mammalian species but is not essential in polyovulatory mice. Our previously established BMP15-edited pigs presented varied female reproductive phenotypes, suggesting the important role of BMP15 in ovarian folliculogenesis in polyovulatory pigs. To understand the regulatory mechanism underlying the effect of BMP15 on porcine ovarian follicular development, we molecularly characterized infertile biallelic-BMP15-edited gilts with ovarian hypoplasia. We found that an absence of BMP15 proteins in biallelic-BMP15-edited gilts can lead to premature activation of primordial follicles, possibly through the upregulation of KITLG-KIT-PI3K-AKT signaling pathways. However, this absence severely impaired SMAD (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling, causing severely reduced granulosa cell proliferation, leading to the arrest of follicular development during the preantral stage and ovarian hypoplasia, resulting in complete infertility. Our study expands the understanding of the molecular functions of BMP15 in nonrodent polyovulatory mammals.


Asunto(s)
Proteína Morfogenética Ósea 15 , Fosfatidilinositol 3-Quinasas , Femenino , Porcinos , Animales , Ratones , Proteína Morfogenética Ósea 15/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Mamíferos/metabolismo
4.
Anim Genet ; 53(3): 317-326, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35292981

RESUMEN

The melanocortin 1 receptor (MC1R), encoded by the classical extension (E) coat color locus, is expressed on the surface of melanocytes and plays a critical role in switching melanin synthesis from pheomelanin (red/yellow) to eumelanin (black/brown). Different MC1R alleles associated with various coat color patterns in pigs have been identified over the past decades. However, functional analysis of variant porcine MC1R alleles has not yet been performed. Therefore, in this study, we examined the subcellular localization and cyclic adenosine monophosphate (cAMP) signaling capability of MC1R variants in porcine kidney epithelial cells (PK15) overexpressing different MC1R alleles. Transcriptional slippage may partially restore the reading frame of the EP allele, possibly accounting for the observed spot phenotype. The A243T substitution in the e allele severely disrupted the membrane localization of the MC1R receptor, resulting in a severely impaired cAMP signaling capability. Both the V95M and L102P substitutions in the ED1 allele may contribute to the constitutively active function of MC1R, thus accounting for the dominant black phenotype. The D124N substitution in the ED2 allele severely attenuated the cAMP signaling capability of MC1R; however, whether this mutation contributes to the distinct phenotype of Hampshire pigs requires further investigation. Thus, our results provide new insights into the functional characteristics of MC1R variants and their roles in porcine coat color formation.


Asunto(s)
Mutación Missense , Receptor de Melanocortina Tipo 1 , Alelos , Animales , Color del Cabello , Mutación , Fenotipo , Receptor de Melanocortina Tipo 1/genética , Porcinos/genética
5.
Yi Chuan ; 44(7): 581-590, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858770

RESUMEN

MC1R (melanocortin 1 receptor) encodes the melanocortin-1 receptor, which can activate intracellular cAMP synthesis under the stimulation of the α-melanocyte stimulating hormone (α-MSH) ligand. Increased cAMP then activates the protein kinase A (PKA) pathway, resulting in the up-regulation of the expression of the microphthalmia-associated transcription factor (MITF) which is a critical regulatory factor of melanin synthesis, and tyrosinase (TYR), the rate-limiting enzyme of melanin synthesis tyrosinase (TYR), and ultimately affects production of eumelanin and pheomelanin, and the coat color phenotype of mammalian species. Previous reports have indicated that the mutation A243T in the transmembrane domain 6 (TM6) of MC1R protein might disrupt the function of MC1R, contributing to the red phenotype in Duroc pig. However, functional analysis of the A243T mutation in MC1R has not yet been carried out. In this study, we attempted to used single-stranded oligo-deoxyribonucleotides (ssODN) as donor templates to introduce the c.727G>A (A243T) mutation into MC1R in human melanoma cell line SK-MEL-2 by CRISPR/Cas9 to analyze its effects on MC1R functions. We found the occurrence of ssODN recombination reached to 10%. Unfortunately, Sanger sequencing MC1R in six single-cell clones revealed that none carried the c.727G>A mutation, but all carried undesired mutations surrounding the target site. Cells transfected with CRISPR/Cas9 plasmids and ssODN presented significantly attenuated cAMP activation, and down-regulated MITF and TYR expression, indicating that the editing MC1R could affect the melanin synthesis function in cells. This study provides a basis for further investigation the mechanism of MC1R mutation on animal coat color.


Asunto(s)
Melanoma , Receptor de Melanocortina Tipo 1 , Animales , Sistemas CRISPR-Cas , Humanos , Mamíferos/metabolismo , Melaninas/genética , Melanoma/genética , Melanoma/metabolismo , Monofenol Monooxigenasa/metabolismo , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/metabolismo , Porcinos
6.
Biol Reprod ; 104(3): 562-577, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33246325

RESUMEN

Enhancer of zeste homolog 2 (EZH2) has been extensively investigated to participate in diverse biological processes, including carcinogenesis, the cell cycle, X-chromosome inactivation, and early embryonic development. However, the functions of this protein during mammalian oocyte meiotic maturation remain largely unexplored. Here, combined with RNA-Seq, we provided evidence that EZH2 is essential for oocyte meiotic maturation in pigs. First, EZH2 protein expression increased with oocyte progression from GV to MII stage. Second, the siRNA-mediated depletion of EZH2 led to accelerated GVBD and early occurrence of the first polar body extrusion. Third, EZH2 knockdown resulted in defective spindle assembly, abnormal SAC activity, and unstable K-MT attachment, which was concomitant with the increased rate of aneuploidy. Finally, EZH2 silencing exacerbated oxidative stress by increasing ROS levels and disrupting the distribution of active mitochondria in porcine oocytes. Furthermore, parthenogenetic embryonic development was impaired following the depletion of EZH2 at GV stage. Taken together, we concluded that EZH2 is necessary for porcine oocyte meiotic progression through regulating spindle organization, maintaining chromosomal integrity, and mitochondrial function.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Meiosis/fisiología , Oocitos/fisiología , Huso Acromático/fisiología , Aneuploidia , Animales , Puntos de Control del Ciclo Celular , Cromosomas , Proteína Potenciadora del Homólogo Zeste 2/genética , Técnicas de Silenciamiento del Gen , Histonas , Mitocondrias , Partenogénesis , RNA-Seq , Porcinos
7.
Yi Chuan ; 43(3): 261-270, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724210

RESUMEN

Myostatin (MSTN) is a member of the transforming growth factor-ß (TGF-ß) family, and functions as an inhibitor of muscle growth. Disrupting the inhibitory effect of MSTN on growth can provide an effective way to increase the muscle yield of livestock and poultry. The cysteine knot motif of TGF-ß can stabilize the structure of MSTN protein and plays an important regulatory role in the biological function of MSTN. Accordingly, in this study, we used the CRISRP/Cas9 to edit the exon 3 of MSTN in the kidney cells of Liang Guang Small Spotted pig (LPKCs), in order to disrupt the cysteine knot motif of MSTN and remove the inhibitory effect of MSTN on its target genes.MSTN-edited LPKCs were obtained through fluorescence-activated cell sorting (FACS) and used as donor cells for somatic cell nuclear transfer (SCNT) to generate cloned embryos, which were then transferred to surrogate sows to finally obtain eight MSTN-edited Liang Guang Small Spotted piglets. Among them, two survived to 10 days old. Genotyping revealed that these two piglets were gene edited heterozygotes with base deletion and substitution occurred within the coding sequence of C106 and C108 at the cystine knot motif of MSTN. These changes resulted in frameshift mutations, and conversion of C106 and C108 to other amino acids. More developments of muscles were observed at the shoulders and hips of the heterozygotes of MSTN-edited Liang Guang Small Spotted pigs. H&E analysis showed that the cross-sectional area (CSA) of myofiber inMSTN-edited pigs was significantly decreased, and the number of myofiber were significantly increased. Western blot analysis showed that the disruption of C106 and C108 did not affect the expression of MSTN protein, but significantly up-regulated the expression of its target genes such as Myf5, MyoD, Myogenin and other myogenic regulatory factors. In summary, the gene-edited pig model obtained in this study did not cause complete loss of MSTN expression, and could retain other biological functions of MSTN, thereby promoting muscle growth while minimizing the potential adverse effects on complete loss of MSTN in the Liang Guang Small Spotted pigs.


Asunto(s)
Sistemas CRISPR-Cas , Miostatina , Animales , Animales Modificados Genéticamente , Motivos Nodales de Cisteina , Femenino , Desarrollo de Músculos/genética , Miostatina/genética , Porcinos
8.
Biol Reprod ; 103(5): 1054-1068, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32761111

RESUMEN

Bone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles. This finding implied that BMP15 plays an important role in the regulation of female fertility and ovarian follicular development in polyovulatory species. To further investigate the regulatory role of BMP15 in porcine ovarian and follicular development, here, we describe the efficient generation of BMP15-edited Yorkshire pigs using CRISPR/Cas9. Using artificial insemination experiments, we found that the biallelically edited gilts were all infertile, regardless of different genotypes. One monoallelically edited gilt #4 (Δ66 bp/WT) was fertile and could deliver offspring with a litter size comparable to that of wild-type gilts. Further analysis established that the infertility of biallelically edited gilts was caused by the arrest of follicular development at preantral stages, with formation of numerous structurally abnormal follicles, resulting in streaky ovaries and the absence of obvious estrous cycles. Our results strongly suggest that the role of BMP15 in nonrodent polyovulatory species may be as important as that in mono-ovulatory species.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Fertilidad/genética , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Animales , Proteína Morfogenética Ósea 15/metabolismo , Sistemas CRISPR-Cas , Femenino , Porcinos
9.
FASEB J ; 33(8): 9638-9655, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145867

RESUMEN

Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Mioblastos/citología , Mioblastos/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desmetilación , Regulación del Desarrollo de la Expresión Génica , Ratones , Desarrollo de Músculos/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Regiones Promotoras Genéticas/genética , Porcinos , Porcinos Enanos
10.
Transgenic Res ; 29(1): 149-163, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31927726

RESUMEN

Myostatin (MSTN), a member of the transforming growth factor-ß superfamily, is a negative regulator of muscle growth and development. Disruption of the MSTN gene in various mammalian species markedly promotes muscle growth. Previous studies have mainly focused on the disruption of the MSTN peptide coding region in pigs but not on the modification of the signal peptide region. In this study, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system was used to successfully introduce two mutations (PVD20H and GP19del) in the MSTN signal peptide region of the indigenous Chinese pig breed, Liang Guang Small Spotted pig. Both mutations in signal peptide increased the muscle mass without inhibiting the production of mature MSTN peptide in the cells. Histological analysis revealed that the enhanced muscle mass in MSTN+/PVD20H pig was mainly due to an increase in the number of muscle fibers. The expression of MSTN in the longissimus dorsi muscle of MSTN+/PVD20H and MSTNKO/PVD20H pigs was significantly downregulated, whereas that of myogenic regulatory factors, including MyoD, Myogenin, and Myf-5, was significantly upregulated when compared to those in the longissimus dorsi muscle of wild-type pigs. Meanwhile, the mutations also activated the PI3K/Akt pathway. The results of this study indicated that precise editing of the MSTN signal peptide can enhance porcine muscle development without markedly affecting the expression of mature MSTN peptide, which could exert other beneficial biological functions in the edited pigs.


Asunto(s)
Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas , Edición Génica , Desarrollo de Músculos , Músculo Esquelético/citología , Miostatina/genética , Señales de Clasificación de Proteína/genética , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Masculino , Miostatina/antagonistas & inhibidores , Porcinos
11.
Reprod Fertil Dev ; 32(11): 999-1011, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32693912

RESUMEN

Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-ß (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Proteína Morfogenética Ósea 15/metabolismo , Técnicas de Silenciamiento del Gen , Masculino , Análisis de Semen , Transducción de Señal/genética , Proteínas Smad/metabolismo , Espermatozoides/citología , Porcinos , Testículo/citología , Factor de Crecimiento Transformador beta1/metabolismo
12.
Clin Genet ; 95(3): 409-414, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30474133

RESUMEN

Premature ovarian insufficiency (POI) is a group of heterogeneous disorders characterized by decreased ovarian reserve and increased follicle stimulating hormone (FSH) levels. It is rarely associated with short stature. FIGLA mutations with POI are identified with regard to heterozygosity; till date, only one affected family has been identified with homozygous mutations in FIGLA but without functional evaluation. Here, we described two POI patients from a consanguineous family from China. An 18-year-old girl and her sister presented with primary amenorrhea and increased FSH and luteinizing hormone levels, but the sister also presented with short stature and bone age delay. Whole-genome sequencing analysis identified a recurrent homozygous mutation in the FIGLA gene, c.2 T > C (p.Met1Thr), in this family member with POI; this variant was segregated within the pedigree. This change was absent in 382 control subjects, and we did not detect any mutations in 39 other idiopathic POI patients. in vitro functional analysis indicates that the p.Met1Thr mutation does not affect the transcription of the FIGLA gene, but blocks the synthesis of the full-length FIGLA protein. Our results support the notion that bi-allelic recessive loss-of-function effects of FIGLA contribute to POI patients with short stature and expand the FIGLA-related phenotypic spectrum.


Asunto(s)
Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Enanismo/diagnóstico , Enanismo/genética , Mutación con Pérdida de Función , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/genética , Adolescente , Consanguinidad , Ciclofosfamida/análogos & derivados , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Linaje , Fenotipo , Secuenciación Completa del Genoma
13.
Transgenic Res ; 28(1): 141-150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30488155

RESUMEN

Insulin-like growth factor 2 (IGF2) plays an important role in the development of the foetus and in post-natal growth and development. A SNP within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 in skeletal muscle and major effects on muscle growth, heart size, and fat deposition. This favourable mutation is common in Western commercial pig populations, but is not present in most indigenous Chinese pig breeds. Here, we described the efficient disruption of the ZBED6 binding site motif in intron 3 of IGF2 by CRISPR/Cas9 in porcine embryonic fibroblasts (PEFs) from the indigenous Chinese pig breed, Liang Guang Small Spotted pig. Disruption of the binding motif led to a drastic up-regulation of IGF2 expression in PEFs and enhanced myogenic potential and cell proliferation of PEFs. IGF2-edited pigs were then generated using somatic cell nuclear transfer. Enhanced muscle development was evident in one pig with biallelic deletion of the ZBED6 binding site motif, implying that the release of ZBED6 repression has a major effect on porcine muscle development. Our study confirmed the important effect of a mutation in the ZBED6 binding site motif on IGF2 expression and myogenesis, thus providing the basis for breeding a new line of Liang Guang Small Spotted pigs with improved lean meat percentage, a trait of great commercial value to pig producers.


Asunto(s)
Sistemas CRISPR-Cas/genética , Factor II del Crecimiento Similar a la Insulina/genética , Desarrollo de Músculos/genética , Proteínas Represoras/genética , Dedos de Zinc , Alelos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Cruzamiento , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intrones/genética , Carne , Porcinos
14.
Yi Chuan ; 41(10): 939-949, 2019 Oct 20.
Artículo en Zh | MEDLINE | ID: mdl-31624056

RESUMEN

Mutations in Hypoxanthine-guanine Phosphoribosyltransferase1 (HPRT1) gene can lead to metabolic disorder of hypoxanthine and guanine metabolism, and other severe symptoms such as hypophrenia, gout, and kidney stones, called the Lesch-Nyhan disease (LND). Although the mutations are widely distributed throughout the HPRT1 gene, there are some isolated hot spots. In this study, we aim to introduce two previously reported hot spots, c.508 C>T and c.151 C>T, which could lead to premature translational termination in HPRT1 gene. Through CRISPR/Cas9 mediated homology-directed repair (HDR) by using single-stranded oligo-deoxyribonucleotides (ssODN) as donor template, we obtained cell clones containing these two mutations in HEK293T or HeLa cells. Targeted mutation of c.508 C>T and c.151 C>T reached to 16.3% and 10%, respectively. We further detect HPRT1 protein levels with Western blot and enzyme activity with 6-TG in 5 different cell clones. HPRT1 protein and its enzymatic activity both was hardly detected in homozygous mutant cells, while reduced HPRT1 protein expression and enzymatic activity was detected in heterozygous mutant cells. Our study will be beneficial to those who working on generation of cell or animal models of HRPT1 mutations, and provides a basis for further investigations on the genetic mechanism of Lesch-Nyhan disease.


Asunto(s)
Sistemas CRISPR-Cas , Hipoxantina Fosforribosiltransferasa/genética , Mutación Puntual , Células HEK293 , Células HeLa , Humanos , Síndrome de Lesch-Nyhan/genética
15.
BMC Biotechnol ; 18(1): 66, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340581

RESUMEN

BACKGROUND: Targeted DNA integration is widely used in basic research and commercial applications because it eliminates positional effects on transgene expression. Targeted integration in mammalian cells is generally achieved through a double crossover event between the genome and a linear donor containing two homology arms flanking the gene of interest. However, this strategy is generally less efficient at introducing larger DNA fragments. Using the homology-independent NHEJ mechanism has recently been shown to improve efficiency of integrating larger DNA fragments at targeted sites, but integration through this mechanism is direction-independent. Therefore, developing new methods for direction-dependent integration with improved efficiency is desired. RESULTS: We generated site-specific double-strand breaks using ZFNs or CRISPR/Cas9 in the human CCR5 gene and a donor plasmid containing a 1.6-kb fragment homologous to the CCR5 gene in the genome. These DSBs efficiently drove the direction-dependent integration of 6.4-kb plasmids into the genomes of two human cell lines through single-crossover recombination. The integration was direction-dependent and resulted in the duplication of the homology region in the genome, allowing the integration of another copy of the donor plasmid. The CRISPR/Cas9 system tended to disrupt the sgRNA-binding site within the duplicated homology region, preventing the integration of another plasmid donor. In contrast, ZFNs were less likely to completely disrupt their binding sites, allowing the successive integration of additional plasmid donor copies. This could be useful in promoting multi-copy integration for high-level expression of recombinant proteins. Targeted integration through single crossover recombination was highly efficient (frequency: 33%) as revealed by Southern blot analysis of clonal cells. This is more efficient than a previously described NHEJ-based method (0.17-0.45%) that was used to knock in an approximately 5-kb long DNA fragment. CONCLUSION: We developed a method for the direction-dependent integration of large DNA fragments through single crossover recombination. We compared and contrasted our method to a previously reported technique for the direction-independent integration of DNA cassettes into the genomes of cultured cells via NHEJ. Our method, due to its directionality and ability to efficiently integrate large fragments, is an attractive strategy for both basic research and industrial application.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Intercambio Genético , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Genoma , Humanos , Plásmidos/genética , Receptores CCR5/genética
16.
Hum Reprod ; 32(4): 944-953, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28175319

RESUMEN

Empty follicle syndrome (EFS) is a reproductive disorder in which no oocytes are retrieved during IVF. The existence of genuine EFS (GEFS) is still controversial, and to date, only one missense mutation of Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR) has been reported to be associated with this disease. Here, we describe a GEFS patient in a non-consanguineous family from China. A 27-year-old woman presented with a 5-year history of primary infertility and LH resistance-like ovaries of unequal sizes, but with normal levels of circulating LH. In spite of a satisfactory ovarian reserve and response, no oocytes were retrieved after two cycles of IVF. Her condition did not appear to be failure of the hCG injection. It is more likely to be a genetic cause. A novel homozygous mutation in LHCGR gene, c.1345G>A (p.Ala449Thr), was detected in this patient. Each of her parents is heterozygous for this change, and the change was absent from 407 control subjects. Alanine at this amino acid position was highly conserved and replacement of threonine was predicted to disrupt the third transmembrane helix of the rhodopsin-like G protein-coupled receptor domain. Protein localization studies revealed that a portion of the mutant LHCGR protein molecules was retained intracellularly. Signalling studies demonstrated that this mutation had differing effects on the response of LHCGR to hCG or LH at different concentrations. Specifically, at a concentration <1 IU/ml, the mutant was activated by hCG stimulation but partially resistant to LH stimulation; at a higher concentration (>1 IU/ml), the mutant was activated by both hCG and LH. These data suggest that screening for mutations in the LHCGR gene may assist in the diagnosis of patients with GEFS. The literature describing the relationship between phenotype and genotypes in females is reviewed, and possible aetiologies and treatment options for this disease are proposed based on our and other studies.


Asunto(s)
Infertilidad Femenina/genética , Enfermedades del Ovario/genética , Receptores de HL/genética , Sustitución de Aminoácidos , Femenino , Estudios de Asociación Genética , Humanos , Infertilidad Femenina/patología , Recuperación del Oocito , Oocitos/crecimiento & desarrollo , Estructura Terciaria de Proteína , Receptores de HL/química , Adulto Joven
17.
Biotechnol Lett ; 39(3): 351-358, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27858321

RESUMEN

OBJECTIVES: To develop an in vitro method for rapid evaluation of the capability of a designed single guide RNAs (sgRNAs) to guide Cas9 nucleases to cleave target loci in mammalian cells. RESULTS: We constructed a Cas9/sgRNA plasmid with two SP6 promoters to simultaneously express Cas9 nuclease and the sgRNA and a negative selection plasmid harbouring a target site of the sgRNA. After co-transforming chemically competent E. coli DH5α cells with the two plasmids, the transformants were plated at a low density on two LB plates: one containing only ampicillin and the other containing both ampicillin and chloramphenicol. The colony-count on the ampicillin + chloramphenicol plate was compared with that on the ampicillin-only plate to calculate the survival percentage. The survival % was negatively correlated with the genome editing efficiency of the sgRNA in mammalian cells evaluated by a T7 endonuclease 1 (T7E1) assay (r ranged from -0.8 to -0.92). This system eliminates the need for cell culture, transfection, FACS sorting, PCR and T7E1 nuclease treatment, and significantly reduces the cost of screening for active sgRNAs, especially in the case of large-scale screening. CONCLUSIONS: We have developed a bacterial-based negative selection system for rapid screening of active sgRNAs in mammalian cells at a very low cost.


Asunto(s)
Escherichia coli/genética , Pruebas Genéticas/métodos , ARN Guía de Kinetoplastida/genética , Animales , Secuencia de Bases , Células HEK293 , Humanos , Mutación INDEL/genética , Ratones , Plásmidos/genética , ARN Guía de Kinetoplastida/metabolismo , Sus scrofa
18.
Yi Chuan ; 39(1): 48-55, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28115305

RESUMEN

As Chinese have raised most pigs and consumed most pig products in the world, improving the fertility of sow is of economic benefits to the pig industry in China. The sheep BMP15 (bone morphogenetic protein 15) gene has been identified as a major gene for controlling ovulation rates and prolific traits, which are key factors affecting the fertility of livestock. As similar natural occurring mutations in the porcine BMP15 gene have not yet been reported, we speculated that introducing the same prolific sheep mutations into the porcine BMP15 gene by using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Sistemas CRISPR-Cas/genética , Proteínas RGS/genética , Animales , Marcación de Gen/métodos , Ingeniería Genética/métodos , Mutación/genética , Porcinos
19.
Biotechnol Bioeng ; 112(5): 1060-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25362885

RESUMEN

The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes.


Asunto(s)
Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Roturas del ADN de Doble Cadena , ADN/genética , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Línea Celular , Endonucleasas/genética , Ingeniería Genética/métodos , Humanos , Datos de Secuencia Molecular
20.
Yi Chuan ; 37(1): 55-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25608814

RESUMEN

IGF2 (Insulin-like growth factor 2) is a major growth factor affecting porcine fetal and postnatal development. We propose that the precise modification of IGF2 gene of Chinese indigenous pig breed--Lantang pig by genome editing technology could reduce its backfat thickness, and increase its lean meat content. Here, we tested the genome editing activities of zinc finger nucleases (ZFNs) and CRISPR/Cas9 system on IGF2 gene in the Lantang porcine fetal fibroblasts (PEF). The results indicated that CRISPR/Cas9 presented cutting efficiency up to 9.2%, which was significantly higher than that generated by ZFNs with DNA cutting efficiency lower than 1%. However, even by using CRISPR/Cas9, the relatively lower percentage of genetically modified cells in the transfected population was not satisfied for somatic nuclear transfer (SCNT). Therefore, we used a SSA (Single-strand annealing) reporter system to enrich genetically modified cells induced by ZFN or CRISPR/Cas9. T7 endonuclease I assay revealed that this strategy improved genome editing activity of CRISPR/Cas9 by 5 folds, and was even more effective for improving genome editing efficiency of ZFN.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Genes Reporteros , Factor II del Crecimiento Similar a la Insulina/genética , Porcinos/genética , Animales , Secuencia de Bases , Desoxirribonucleasas/química , Ingeniería Genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Datos de Secuencia Molecular , Porcinos/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA