Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Lett ; 20(1): 20230479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290551

RESUMEN

The sensory mechanisms used by baleen whales (Mysticeti) for locating ephemeral, dense prey patches in vast marine habitats are poorly understood. Baleen whales have a functional olfactory system with paired rather than single blowholes (nares), potentially enabling stereo-olfaction. Dimethyl sulfide (DMS) is an odorous gas emitted by phytoplankton in response to grazing by zooplankton. Some seabirds use DMS to locate prey, but this ability has not been demonstrated in whales. For 14 extant species of baleen whale, nares morphometrics (imagery from unoccupied aerial systems, UAS) was related to published trophic level indices using Bayesian phylogenetic mixed modelling. A significant negative relationship was found between nares width and whale trophic level (ß = -0.08, lower 95% CI = -0.13, upper 95% CI = -0.03), corresponding with a 39% increase in nares width from highest to lowest trophic level. Thus, species with nasal morphology best suited to stereo-olfaction are more zooplanktivorous. These findings provide evidence that some baleen whale species may be able to localize odorants e.g. DMS. Our results help direct future behavioural trials of olfaction in baleen whales, by highlighting the most appropriate species to study. This is a research priority, given the potential for DMS-mediated plastic ingestion by whales.


Asunto(s)
Olfato , Ballenas , Animales , Filogenia , Teorema de Bayes , Ecosistema
2.
Environ Monit Assess ; 196(8): 722, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985399

RESUMEN

Ecological monitoring is a vital tool to help us assess habitat condition and understand the mechanism(s) for habitat change. Yet many countries struggle to meet their monitoring requirements in part due to the high assessment workload. Rapid ecological assessment methods may have an important role to play in this regard. Following their success within several European habitats (e.g., semi-natural grasslands), they are now being developed for additional habitats such as heathlands, peatlands, and other agri-associated areas. Whilst some rapid assessments using ecological scorecards have been shown to be accurate compared to traditional ecological monitoring, less is known about the functionality of these scorecards in heterogenous landscapes. In this study, we selected four existing scorecards to test alongside a prototype. We assessed how these different scorecards measured habitat condition on the same heathland sites. We found that the choice of metrics, their score weighting, and the thresholds used for categorical scores cause scorecards to assess the same site with substantial variation (37%). Vegetation metrics were the primary cause of score variation, with vegetation structure and positive indicator species being the leading causes. Our study indicates that whilst current scorecards may be representative of project-specific goals, they may not be suitable for wider monitoring uses in their current form. Ecological scorecards have great potential to drastically increase the extent of monitoring, but caution is needed before adapting existing scorecards beyond the purposes from which they were designed.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Ecología , Biodiversidad
3.
Ecol Lett ; 24(5): 970-983, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33638576

RESUMEN

Life history strategies are fundamental to the ecology and evolution of organisms and are important for understanding extinction risk and responses to global change. Using global datasets and a multiple response modelling framework we show that trait-climate interactions are associated with life history strategies for a diverse range of plant species at the global scale. Our modelling framework informs our understanding of trade-offs and positive correlations between elements of life history after accounting for environmental context and evolutionary and trait-based constraints. Interactions between plant traits and climatic context were needed to explain variation in age at maturity, distribution of mortality across the lifespan and generation times of species. Mean age at maturity and the distribution of mortality across plants' lifespan were under evolutionary constraints. These findings provide empirical support for the theoretical expectation that climatic context is key to understanding trait to life history relationships globally.


Asunto(s)
Rasgos de la Historia de Vida , Evolución Biológica , Ecología , Fenotipo , Plantas
4.
Biol Lett ; 16(7): 20200199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32603646

RESUMEN

Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no 'one-size-fits-all' approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.


Asunto(s)
Evolución Biológica , Ecología
5.
Ecol Lett ; 22(3): 527-537, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30616302

RESUMEN

Snake venom is well known for its ability to incapacitate and kill prey. Yet, potency and the amount of venom available varies greatly across species, ranging from the seemingly harmless to those capable of killing vast numbers of potential prey. This variation is poorly understood, with comparative approaches confounded by the use of atypical prey species as models to measure venom potency. Here, we account for such confounding issues by incorporating the phylogenetic similarity between a snake's diet and the species used to measure its potency. In a comparative analysis of 102 species we show that snake venom potency is generally prey-specific. We also show that venom yields are lower in species occupying three dimensional environments and increases with body size corresponding to metabolic rate, but faster than predicted from increases in prey size. These results underline the importance of physiological and environmental factors in the evolution of predator traits.


Asunto(s)
Ecosistema , Venenos de Serpiente , Filogenia
6.
Biotechnol Bioeng ; 115(8): 1958-1970, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29663322

RESUMEN

Quantification of abnormal contractile motions of cardiac tissue has been a noteworthy challenge and significant limitation in assessing and classifying the drug-induced arrhythmias (i.e., Torsades de pointes). To overcome these challenges, researchers have taken advantage of computational image processing tools to measure contractile motion from cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the amplitude and frequency analysis of contractile motion waveforms does not produce sufficient information to objectively classify the degree of variations between two or more sets of cardiac contractile motions. In this paper, we generated contractile motion data from beating hiPSC-CMs using motion tracking software based on optical flow analysis, and then implemented a computational algorithm, phase space reconstruction (PSR), to derive parameters (embedding, regularity, and fractal dimensions) to further characterize the dynamic nature of the cardiac contractile motions. Application of drugs known to cause cardiac arrhythmia induced significant changes to these resultant dimensional parameters calculated from PSR analysis. Integrating this new computational algorithm with the existing analytical toolbox of cardiac contractile motions will allow us to expand current assessments of cardiac tissue physiology into an automated, high-throughput, and quantifiable manner which will allow more objective assessments of drug-induced proarrhythmias.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Técnicas Citológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Células Madre Pluripotentes Inducidas/fisiología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Imagen Óptica/métodos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Movimiento (Física) , Miocitos Cardíacos/fisiología , Programas Informáticos
7.
Cardiovasc Drugs Ther ; 31(4): 445-458, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28735360

RESUMEN

PURPOSE: The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. METHODS: The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. RESULTS: We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. CONCLUSIONS: The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diseño de Fármacos , Animales , Fármacos Cardiovasculares/farmacología , Enfermedades Cardiovasculares/fisiopatología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica , Humanos
8.
Ecol Lett ; 19(9): 1172-85, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27432641

RESUMEN

Human actions challenge nature in many ways. Ecological responses are ineluctably complex, demanding measures that describe them succinctly. Collectively, these measures encapsulate the overall 'stability' of the system. Many international bodies, including the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, broadly aspire to maintain or enhance ecological stability. Such bodies frequently use terms pertaining to stability that lack clear definition. Consequently, we cannot measure them and so they disconnect from a large body of theoretical and empirical understanding. We assess the scientific and policy literature and show that this disconnect is one consequence of an inconsistent and one-dimensional approach that ecologists have taken to both disturbances and stability. This has led to confused communication of the nature of stability and the level of our insight into it. Disturbances and stability are multidimensional. Our understanding of them is not. We have a remarkably poor understanding of the impacts on stability of the characteristics that define many, perhaps all, of the most important elements of global change. We provide recommendations for theoreticians, empiricists and policymakers on how to better integrate the multidimensional nature of ecological stability into their research, policies and actions.


Asunto(s)
Conservación de los Recursos Naturales , Ecología , Ecosistema , Biodiversidad , Terminología como Asunto
9.
Am Nat ; 187(6): 706-16, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27172591

RESUMEN

Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.


Asunto(s)
Tamaño Corporal , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Conducta Alimentaria , Animales , Conducta Apetitiva , Dinosaurios/crecimiento & desarrollo
10.
Nat Mater ; 14(9): 918-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26213899

RESUMEN

Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells' focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces.


Asunto(s)
Adhesión Celular , Adhesiones Focales/metabolismo , Nanoestructuras/química , Animales , Ratones , Células 3T3 NIH , Propiedades de Superficie
11.
Biomacromolecules ; 17(10): 3162-3171, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548567

RESUMEN

Multivalent conjugates (MVCs) (conjugation of multiple proteins to a linear polymer chain) are powerful for improving the bioactivity and pharmacokinetics of a bioactive molecule. Since this effect is highly dependent upon the valency of the conjugated proteins, it is imperative to have a technique for analysis of the conjugation ratio. Studies of MVCs have used size exclusion chromatography-multiangle light scattering (SEC-MALS), which allows for the separate and individual analysis of the protein and biopolymer components based on their specific refractive index increment and UV extinction coefficient constants to determine the number of proteins bound per biopolymer molecule. In this work, we have applied traditional branching analysis to the SEC-MALS data, with the primary assumption that the polymer backbone can be used as the linear counterpart. We demonstrated good agreement between the branching values and the valency determined by traditional analysis, demonstrating that branching analysis can be used as an alternative technique to approximate the valency of MVCs. The branching analysis method also provides a more complete picture of the distribution of the measured values, provides important branching information about the molecules, and lowers the cost and complexity of the characterization. However, since MVC molecules are both conjugate molecules and branched molecules, the most powerful approach to their characterization would be to use both traditional multivalent conjugate analysis and branching analysis in conjunction.


Asunto(s)
Biopolímeros/química , Proteínas/química , Cromatografía en Gel , Dispersión Dinámica de Luz , Proteínas/aislamiento & purificación
12.
Biomacromolecules ; 16(7): 2109-18, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26020464

RESUMEN

While electrospun fibers are of interest as scaffolds for tissue engineering applications, nonspecific surface interactions such as protein adsorption often prevent researchers from controlling the exact interactions between cells and the underlying material. In this study we prepared electrospun fibers from a polystyrene-based macroinitiator, which were then grafted with polymer brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). These brush coatings incorporated a trimethylsilyl-protected PEG-alkyne monomer, allowing azide functional molecules to be covalently attached, while simultaneously reducing nonspecific protein adsorption on the fibers. Cells were able to attach and spread on fibrous substrates functionalized with a pendant RGD-containing peptide, while spreading was significantly reduced on nonfunctionalized fibers and those with the equivalent RGE control peptide. This effect was observed both in the presence and absence of serum in the culture media, indicating that protein adsorption on the fibers was minimal and cell adhesion within the fibrous scaffold was mediated almost entirely through the cell-adhesive RGD-containing peptide.


Asunto(s)
Fibroblastos/fisiología , Poliestirenos/química , Andamios del Tejido/química , Adsorción , Animales , Adhesión Celular , Línea Celular , Fibroblastos/citología , Ensayo de Materiales , Ratones , Propiedades de Superficie
13.
Proc Biol Sci ; 281(1784): 20140298, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24741018

RESUMEN

Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time.


Asunto(s)
Aves/fisiología , Longevidad , Mamíferos/fisiología , Animales , Conducta Animal , Vuelo Animal , Fenotipo , Filogenia , Especificidad de la Especie
14.
NPJ Syst Biol Appl ; 10(1): 22, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429306

RESUMEN

In the initial hours following the application of the calcium channel blocker (CCB) nifedipine to microtissues consisting of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we observe notable variations in the drug's efficacy. Here, we investigate the possibility that these temporal changes in CCB effects are associated with adaptations in the expression of calcium ion channels in cardiomyocyte membranes. To explore this, we employ a recently developed mathematical model that delineates the regulation of calcium ion channel expression by intracellular calcium concentrations. According to the model, a decline in intracellular calcium levels below a certain target level triggers an upregulation of calcium ion channels. Such an upregulation, if instigated by a CCB, would then counteract the drug's inhibitory effect on calcium currents. We assess this hypothesis using time-dependent measurements of hiPSC-CMs dynamics and by refining an existing mathematical model of myocyte action potentials incorporating the dynamic nature of the number of calcium ion channels. The revised model forecasts that the CCB-induced reduction in intracellular calcium concentrations leads to a subsequent increase in calcium ion channel expression, thereby attenuating the drug's overall efficacy. The data and fit models suggest that dynamic changes in cardiac cells in the presence of CCBs may be explainable by induced changes in protein expression, and that this may lead to challenges in understanding calcium based drug effects on the heart unless timings of applications are carefully considered.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Calcio , Canales de Calcio
15.
Tissue Eng Part A ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534963

RESUMEN

Current treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML. For this, we used a novel model of masseter VML in the rat. Following the creation of a 5 mm × 5 mm injury to the superficial masseter and administration of AcHyA to the wound, masseters were explanted between 2 and 16 weeks postoperatively and were analyzed for evidence of muscle regeneration including fibrosis, defect size, and fiber cross-sectional area (FCSA). At 8 and 16 weeks, masseters treated with AcHyA showed significantly less fibrosis than nonrepaired controls and a smaller decrease in defect size. The mean FCSA among fibers near the defect was significantly greater among hydrogel-repaired than control masseters at 8 weeks, 12 weeks, and 16 weeks. These results show that the hydrogel mitigates the fibrotic healing response and wound contracture. Our findings also suggest that hydrogel-based treatments have potential use as a treatment for the regeneration of craniofacial VML and demonstrate a system for evaluating subsequent iterations of materials in VML injuries.

16.
Ecol Lett ; 16(4): 421-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23419041

RESUMEN

Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of these multiple components of stability, most ecological research has focused on one or a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non-independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. Studies that focus on single forms of stability in isolation therefore risk underestimating significantly the potential of perturbations to destabilise ecosystems. In contrast, application of the multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Bivalvos , Ecología , Rótula , Conducta Predatoria
17.
Ecol Evol ; 13(5): e10076, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206684

RESUMEN

The shape of mortality, or how mortality is spread across an organism's life course, is fundamental to a range of biological processes, with attempts to quantify it rooted in ecology, evolution, and demography. One approach to quantify the distribution of mortality over an organism's life is the use of entropy metrics whose values are interpreted within the classical framework of survivorship curves ranging from type I distributions, with mortality concentrated in late life stages, to type III survivorship curves associated with high early stage mortality. However, entropy metrics were originally developed using restricted taxonomic groups and the behavior of entropy metrics over larger scales of variation may make them unsuitable for wider-ranging contemporary comparative studies. Here, we revisit the classic survivorship framework and, using a combination of simulations and comparative analysis of demography data spanning the animal and plant kingdoms, we show that commonly used entropy metrics cannot distinguish between the most extreme survivorship curves, which in turn can mask important macroecological patterns. We show how using H entropy masks a macroecological pattern of how parental care is associated with type I and type II species and for macroecological studies recommend the use of metrics, such as measures of area under the curve. Using frameworks and metrics that capture the full range of variation of survivorship curves will aid in our understanding of the links between the shape of mortality, population dynamics, and life history traits.

18.
Toxicon ; 234: 107303, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37775046

RESUMEN

Extraction is the first step when investigating venom composition and function. In small invertebrates, widely used extraction methods include electrostimulation and venom gland extraction, however, the influence of these methods on composition and toxicology is poorly understood. Using the Giant House Spider Eratigena atrica as a model, we show that electrostimulation and venom gland removal extraction methods produce different protein profiles as assessed by Coomassie-stained SDS-PAGE and significantly different potencies in the cricket Acheta domesticus.

19.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645943

RESUMEN

Efforts to identify anti-cancer therapeutics and understand tumor-immune interactions are built with in vitro models that do not match the microenvironmental characteristics of human tissues. Using in vitro models which mimic the physical properties of healthy or cancerous tissues and a physiologically relevant culture medium, we demonstrate that the chemical and physical properties of the microenvironment regulate the composition and topology of the glycocalyx. Remarkably, we find that cancer and age-related changes in the physical properties of the microenvironment are sufficient to adjust immune surveillance via the topology of the glycocalyx, a previously unknown phenomenon observable only with a physiologically relevant culture medium.

20.
Bioconjug Chem ; 23(9): 1794-801, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22794081

RESUMEN

The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product-consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multiangle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and help to better understand multivalent macromolecular interactions in biological systems.


Asunto(s)
Cromatografía en Gel/métodos , Dispersión de Radiación , Secuencia de Aminoácidos , Secuencia de Carbohidratos , Proteínas Hedgehog/química , Ácido Hialurónico/química , Luz , Datos de Secuencia Molecular , Péptidos/química , Refractometría , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA