Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708003

RESUMEN

MOTIVATION: Identifying regulatory regions in the genome is of great interest for understanding the epigenomic landscape in cells. One fundamental challenge in this context is to find the target genes whose expression is affected by the regulatory regions. A recent successful method is the Activity-By-Contact (ABC) model which scores enhancer-gene interactions based on enhancer activity and the contact frequency of an enhancer to its target gene. However, it describes regulatory interactions entirely from a gene's perspective, and does not account for all the candidate target genes of an enhancer. In addition, the ABC model requires two types of assays to measure enhancer activity, which limits the applicability. Moreover, there is neither implementation available that could allow for an integration with transcription factor (TF) binding information nor an efficient analysis of single-cell data. RESULTS: We demonstrate that the ABC score can yield a higher accuracy by adapting the enhancer activity according to the number of contacts the enhancer has to its candidate target genes and also by considering all annotated transcription start sites of a gene. Further, we show that the model is comparably accurate with only one assay to measure enhancer activity. We combined our generalized ABC model with TF binding information and illustrated an analysis of a single-cell ATAC-seq dataset of the human heart, where we were able to characterize cell type-specific regulatory interactions and predict gene expression based on TF affinities. All executed processing steps are incorporated into our new computational pipeline STARE. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/schulzlab/STARE. CONTACT: marcel.schulz@em.uni-frankfurt.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos , Unión Proteica
2.
Proteomics ; 23(23-24): e2200462, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37706624

RESUMEN

Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/metabolismo , Genoma , Biología Computacional , Redes Reguladoras de Genes
3.
Nucleic Acids Res ; 48(W1): W193-W199, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32459338

RESUMEN

A current challenge in genomics is to interpret non-coding regions and their role in transcriptional regulation of possibly distant target genes. Genome-wide association studies show that a large part of genomic variants are found in those non-coding regions, but their mechanisms of gene regulation are often unknown. An additional challenge is to reliably identify the target genes of the regulatory regions, which is an essential step in understanding their impact on gene expression. Here we present the EpiRegio web server, a resource of regulatory elements (REMs). REMs are genomic regions that exhibit variations in their chromatin accessibility profile associated with changes in expression of their target genes. EpiRegio incorporates both epigenomic and gene expression data for various human primary cell types and tissues, providing an integrated view of REMs in the genome. Our web server allows the analysis of genes and their associated REMs, including the REM's activity and its estimated cell type-specific contribution to its target gene's expression. Further, it is possible to explore genomic regions for their regulatory potential, investigate overlapping REMs and by that the dissection of regions of large epigenomic complexity. EpiRegio allows programmatic access through a REST API and is freely available at https://epiregio.de/.


Asunto(s)
Elementos Reguladores de la Transcripción , Programas Informáticos , Secuenciación de Inmunoprecipitación de Cromatina , Enfermedad/genética , Regulación de la Expresión Génica , Humanos , Factores de Transcripción/metabolismo
4.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091778

RESUMEN

Constraint-based network modelling is a powerful tool for analysing cellular metabolism at genomic scale. Here, we conducted an integrative analysis of metabolic networks reconstructed from RNA-seq data with paired epigenomic data from the EpiATLAS resource of the International Human Epigenome Consortium (IHEC). Applying a state-of-the-art contextualisation algorithm, we reconstructed metabolic networks across 1,555 samples corresponding to 58 tissues and cell types. Analysis of these networks revealed the distribution of metabolic functionalities across human cell types and provides a compendium of human metabolic activity. This integrative approach allowed us to define, across tissues and cell types, i) reactions that fulfil the basic metabolic processes (core metabolism), and ii) cell type-specific functions (unique metabolism), that shape the metabolic identity of a cell or a tissue. Integration with EpiATLAS-derived cell type-specific gene-level chromatin states and enhancer-gene interactions identified enhancers, transcription factors, and key nodes controlling core and unique metabolism. Transport and first reactions of pathways were enriched for high expression, active chromatin state, and Polycomb-mediated repression in cell types where pathways are inactive, suggesting that key nodes are targets of repression. This integrative analysis forms the basis for identifying regulation points that control metabolic identity in human cells.

5.
Nat Commun ; 13(1): 7444, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460641

RESUMEN

Mechanisms by which specific histone modifications regulate distinct gene networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression during cardiogenesis. Embryonic cardiomyocyte ablation of Dot1l revealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific transcriptional networks at two critical cardiogenic junctures: embryonic cardiogenesis, where it was particularly important for left ventricle-specific genes, and postnatal cardiomyocyte cell cycle withdrawal, with Dot1L mutants having more mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity. Mechanistic analyses revealed that H3K79me2 in two distinct domains, gene bodies and regulatory elements, synergized to promote expression of genes activated by DOT1L. Surprisingly, H3K79me2 in specific regulatory elements also contributed to silencing genes usually not expressed in cardiomyocytes. These results reveal mechanisms by which DOT1L successively regulates left ventricle specification and cardiomyocyte cell cycle withdrawal.


Asunto(s)
Redes Reguladoras de Genes , Miocitos Cardíacos , División Celular , Ciclo Celular/genética , Ventrículos Cardíacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA