RESUMEN
Exposure to air pollution from solid-fuel cookstoves is a leading risk factor for premature death; however, the effect of fuel moisture content on air pollutant emissions from solid-fuel cookstoves remains poorly constrained. The objective of this work was to characterize emissions from a rocket-elbow cookstove burning wood at three different moisture levels (5%, 15%, and 25% on a dry mass basis). Emissions of carbon dioxide (CO2), carbon monoxide (CO), methane, fine particulate matter (PM2.5), PM2.5 elemental carbon (EC), PM2.5 organic carbon, formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, and xylenes were measured. Emission factors (EFs; g·MJdelivered-1) for all pollutants, except CO2 and EC, increased with increasing fuel moisture content: CO EFs increased by 84%, PM2.5 EFs increased by 149%, formaldehyde EFs increased by 216%, and benzene EFs increased by 82%. Both modified combustion efficiency and the temperature at the combustion chamber exit decreased with increasing fuel moisture, suggesting that the energy required to vaporize water in the fuel led to lower temperatures in the combustion chamber and lower gas-phase oxidation rates. These results illustrate that changes in fuel equilibrium moisture content could cause EFs for pollutants such as PM2.5 to vary by a factor of 2 or more across different geographic regions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Codo , Monitoreo del Ambiente , Material ParticuladoRESUMEN
Cookstoves emit many pollutants that are harmful to human health and the environment. However, most of the existing scientific literature focuses on fine particulate matter (PM2.5) and carbon monoxide (CO). We present an extensive data set of speciated air pollution emissions from wood, charcoal, kerosene, and liquefied petroleum gas (LPG) cookstoves. One-hundred and twenty gas- and particle-phase constituents-including organic carbon, elemental carbon (EC), ultrafine particles (10-100 nm), inorganic ions, carbohydrates, and volatile/semivolatile organic compounds (e.g., alkanes, alkenes, alkynes, aromatics, carbonyls, and polycyclic aromatic hydrocarbons (PAHs))-were measured in the exhaust from 26 stove/fuel combinations. We find that improved biomass stoves tend to reduce PM2.5 emissions; however, certain design features (e.g., insulation or a fan) tend to increase relative levels of other coemitted pollutants (e.g., EC ultrafine particles, carbonyls, or PAHs, depending on stove type). In contrast, the pressurized kerosene and LPG stoves reduced all pollutants relative to a traditional three-stone fire (≥93% and ≥79%, respectively). Finally, we find that PM2.5 and CO are not strong predictors of coemitted pollutants, which is problematic because these pollutants may not be indicators of other cookstove smoke constituents (such as formaldehyde and acetaldehyde) that may be emitted at concentrations that are harmful to human health.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Biomasa , Culinaria , Combustibles Fósiles , Humanos , Material ParticuladoRESUMEN
Air pollution from cookstoves creates a substantial human and environmental health burden. A disproportionate fraction of emissions can occur during stove ignition (startup) compared to main cooking, yet startup material emissions are poorly quantified. Laboratory tests were conducted to measure emissions from startups using kerosene, plastic bags, newspaper, fabric, food packaging, rubber tire tubes, kindling, footwear, and wood shims. Measured pollutants included: fine particulate matter mass (PM2.5), PM2.5 elemental and organic carbon, methane, carbon monoxide, carbon dioxide, benzene, and formaldehyde. Results demonstrate substantial variability in the measured emissions across materials on a per-startup basis. For example, kerosene emitted 496 mg PM2.5 and 999 mg CO per startup, whereas plastic bags emitted 2 mg PM2.5 and 30 mg CO. When considering emissions on a per-mass basis, the ordering of materials from highest-to-lowest emissions changes, emphasizing the importance of establishing how much material is needed to start a stove. The proportional contribution of startups to overall emissions varies depending on startup material type, stove type, and cooking event length; however, results demonstrate that startup materials can contribute substantially to a cookstove's emissions. Startup material choice is especially important for cleaner stove-fuel combinations where the marginal benefits of reduced emissions are potentially greater.
Asunto(s)
Contaminantes Atmosféricos , Artículos Domésticos , Culinaria , Monitoreo del Ambiente , Humanos , Material ParticuladoRESUMEN
The present work used a near-infrared methane cavity ring-down spectroscopy (CRDS) sensor to examine performance and limitations of open-path CRDS for atmospheric measurements. A simple purge-enclosure was developed to maintain high mirror reflectivity and allowed >100 hours of operation with mirror reflectivity above 0.99996. We characterized effects of aerosols on ring-down decay signals and found the dominant effect to be fluctuations by large super-micron particles. Simple software filtering approaches were developed to combat these fluctuations allowing noise-equivalent sensitivity of ~6x10-10 cm-1HJ Hz-1/2 within a factor of ~3 of closed-path systems (based on stability of the absorption baseline). Sensor measurements were validated against known methane concentrations in a closed-path configuration, while open-path validation was performed by side-by-side comparison with a commercial closed-path system.
RESUMEN
Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (nâ¯=â¯20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6⯵gâ¯m-3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816⯵gâ¯m-3, followed by benzene (3.13-51.8⯵gâ¯m-3), xylenes (5.16-34.6⯵gâ¯m-3), and ethylbenzene (1.65-9.52⯵gâ¯m-3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1â¯×â¯10-6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1â¯×â¯10-4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.